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Scattering pictures in 
4
He+

40
Ca system, from rainbow scattering to anomalous large angle scattering (ALAS) and 

down to near Coulomb barrier scattering (NCBS), are systematically explained using the scattering matrix approach 

in which the nuclear absorption and refraction phases are smooth monotonic functions of angular momentum and the 

quantum deflection function is of the rainbow-like form and the artificial intelligence evolutionary computations 

technique.  
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1. SCATTERING PICTURES 

OBSERVED IN 
4
He+

40
Ca SYSTEM 

AT E=1…25 MeV/NUCLEON 

The nuclear-nuclear interaction at energies of 

1…25 MeV/nucleon is characterized by a variety of 

scattering patterns. For example [1–12] (Fig. 1), in the 

measured differential cross section (normalized to the 

Rutherford cross section) of elastic scattering of α-

particles by 
40

Ca nuclei σ/σR at energies of about 

20 MeV/nucleon (82 MeV on Fig. 1), a nuclear rainbow 

pattern is observed with a characteristic broad maximum 

and a subsequent regular exponential decrease in the 

cross section at large scattering angles θ. With 

decreasing energy, a nuclear pre-rainbow pattern 

appears (61 MeV on Fig. 1) with various interference 

structures, for example, Airy structures of different 

orders (minima of the Airy function are marked as 

A1,2,3 on Fig. 1) and a violation of the regular 

exponential decrease in the cross section at large angles. 

With further energy reduction, a pattern of ano-malous 

large-angle scattering (ALAS) is observed 

(22…49.5 MeV on Fig. 1) with an unusual increase of 

orders of magnitude in the oscillating cross section in 

the large-angle region. Further energy reduction leads to 

a sequential transformation of this pattern into a 

scattering pattern near the Coulomb barrier (NCBS) 

with suppression of cross section oscillations and an 

increase in the influence of the Coulomb interaction 

(4.5…18 MeV on Fig. 1). 

Thus far, to our knowledge, neither the smoothly 

varying global optical potential, nor the single potential 

family has been found to describe all the variety of 

scattering pictures observed in the 
4
He-

40
Ca elastic 

scattering at E<25 MeV/nucleon. 

Using the evolutionary S-matrix approach developed 

by us [13,14], we have for the first time obtained a 

unified consistent systematic description of all the 

mentioned scattering patterns [15,16].  

2. EVOLUTIONARY 

MODEL-INDEPENDENT 

SCATTERING MATRIX APPROACH 

In our approach, the scattering matrix describing the 
4
He-

40
Ca elastic scattering has the form  

      lilSlS CN 2exp ,                   (1) 

where  

                               lillS rN  2exp ,                   (2) 

is the nuclear part, σC(l) is the Coulomb scattering phase 

taken to be the quasiclassical phase of point-charge 

scattering by a uniformly charged sphere with the radius 

RC=1.3×40
1/3

 at above-Coulomb-barrier energies and the 

ordinary Coulomb phase for scattering of two point 

charges at lower energies,  

                                 ll a 2exp  ,                       (3) 

is the scattering matrix modulus, δr(l) is the nuclear 

refraction phase (real part of the nuclear phase), and 

δa(l) is the nuclear absorption phase (imaginary part of 

the nuclear phase). Calculations are performed usi

ng the expansion of the scattering amplitude into a series 

of Legendre polynomials. The elastic scattering 

differential cross section equals the squared modulus of 

this amplitude. The quality of fitting the calculated 

differential cross section to the experimentally measured 

one is estimated using the standard χ
2
 magnitude per 

datum. The experimental errors are assumed to be 

equally weighted (10% error bars). 

More detailed analysis of complicated structures 

inherent in the elastic scattering cross sections under 

discussion can be performed with the use of the 

nearside-farside decomposition. To detect the Airy 

structures, we use both the farside component and the 

farside component calculated without absorption in the 

scattering matrix [η(l)=1 for all l].  
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Fig. 1. Elastic scattering differential cross sections (ratio to Rutherford) for the system 

4
He+

40
Ca at 

E=4.5…82.0 MeV (solid curves), their farside (dashed curves) and nearside (dotted curves) components, and 

farside cross-section components calculated without absorption in the scattering matrix (dash-dotted curves).  

A1, A2 and A3 denote the Airy minima of first, second and third orders. The data are from Refs. [1–12] 

 

Our evolutionary model-independent S-matrix appro-

ach [14–16] operates on a population of N individuals. 

Each individual is an S matrix presented as a pair of 

real-valued lmax dimensional vectors [δa(l),δr(l)], l = 

0,1,...,lmax−1. Fitness of each individual reflects the 

quality of data fitting provided by the individual’s S 

matrix. Using the mutation operation, the algorithm 

evolves the initial population of poorly fitted individuals 

to the final population of the well-fitted ones. Every 

iteration, the so-called generation, of our procedure 

contains the following steps. 

(1) Generating the initial population of N individuals. 

For each individual, vectors δa,r(l) are set using a 

physically justified function: 
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Parameters gi, li , and di are positive and are chosen for 

each individual at random within certain intervals wide 

enough to obtain substantially different shapes of the 

phases. 

(2) Evaluating fitness of each individual in the 

population. The fitness function in our approach consi-

sts of two parts. The first one is associated with the 

quality of shapes of δa,r(l), and the second one accounts 

for the quality of fitting of the experimental data. Shapes 

of δa,r(l) must meet the following requirements: 

(i) Functions δa,r(l) must be descending. 

(ii) The first derivatives of δa,r(l) must have only one 

minimum and no maxima. 

(iii) The second derivatives of δa,r(l) are allowed to 

have one deepest minimum, one highest maximum, and 

an arbitrary number of local minima and maxima that do 

not substantially influence the shapes of phases. 

(iv) The third derivative of δr(l) is allowed to have 

two deepest minima, one highest maximum, and an 

arbitrary number of local minima and maxima that do 

not substantially influence the shape of the real nuclear 

phase. 

(v) Logarithmic derivatives of δa,r (l) should be 

descending in the phase tail region. The individual for 

which at least one of these requirements is violated is 

excluded from the population. 

(3) Letting each individual in the population produce 

M>>1 offspring. Replication is performed according to 

the transformation: 

                  imimiiii dllDNAll ,, ,,1,0log'log   ,  

                                      rai , ,                                  (5) 

where δi(l) and δi‘(l) are the parent’s and the offspring’s 

S-matrix phases, respectively, Ai>0 is the mutation 

amplitude, Ai∈ [Amin,Amax], Ni(0,1) denotes a normally 

distributed one-dimensional random number with mean 

zero and one standard deviation, D(l,lm,i,dm,i) is the 

mutation diffusing function, lm,i stands for the mutation 

point chosen randomly, lm,i∈ [0,lmax−1], and dm,i>0 is the 

value characterizing the diffuseness of the mutation 

point, dm,i∈ [dmin,dmax]. The mutation diffusing function 

has the form  
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During the replication of the parent, the values of 

mutation amplitude and diffuseness are tuned within he 

specified intervals as follows: 

                                1,0exp' iii LNAA  , 
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                             1,0exp' ,, iimim LNdd  ,                 (7) 

where Ai and dm,i are the values of mutation amplitude 

and diffuseness of the parent, while Ai and dm,i are the 

same values of the offspring, respectively, L is the 

learning parameter that controls the speed of tuning. The 

lengths of the intervals [Amin,Amax] and [dmin,dmax], 

having large values at the beginning of the procedure, 

smoothly decrease during the run and acquire small 

values at the end. This tactic provides for both removal 

of the features of primary parametrization (4) from the 

individual’s S(l) and fine tuning of details of S(l).  

(4) Evaluating fitness values of all offspring. Sort the 

ffspring in descending order according to their fitness. 

Select N best offspring to form the new population. 

(5) Going to step 3 or stop if the best fitness in the 

population is sufficiently high (the χ
2
 value is small 

enough). 

 

 
Fig. 2. Scattering matrix moduli η(l), nuclear phases δr(l), and deflection functions Θ(l) for the 

4
He+

40
Ca elastic 

scattering at E=4.5…82.0 MeV 

 

 

Fig. 3. (a) Evolution with center-of-mass energy of the intensities of nuclear refraction 2δr (0) and nuclear 

absorption 2δa(0) for the system 
4
He+

40
Ca. Solid curves are only to guide the eye. (b) Evolution with reciprocal 

center-of-mass energy of the nuclear rainbow angle θR. Straight line shows results of fitting to the data. Evolution 

with center-of-mass energy of the angular position of the Airy minima of first A1 and second A2 orders in the 

measured differential cross sections for the system 
4
He+

40
Ca (circles) and in the farside cross-section components 

calculated without absorption in the scattering matrix (squares), Straight lines show results of fitting to the data 

indicated as circles 

 

3. RESULTS  

In each case under investigation, from nuclear 

rainbow at sufficiently high energies to ALAS at the 

lower energies and down to NCBS, the data in the whole 

angular range considered are correctly described by the 

differential cross section (see Fig. 1) calculated with the 

obtained smooth monotonic representations for the 

scattering matrix modulus and nuclear phase (Fig. 2). 

When the energy decreases from 82 to 22 MeV for 

all analyzed cross sections in the region of large 

scattering angles, a moderate increase in the dominant 

farside component of the cross section (see dashed 

curves on Fig. 1), which is a manifestation of the effects 
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of strong nuclear refraction, and a sharp increase in the 

nearside component of the cross section (see dotted 

curves on Fig. 1). The interference of these components, 

which increases with decreasing energy, causes a 

transition from the nuclear rainbow pattern to the pattern 

of anomalous large angle scattering. When the energy 

decreases from 18 to 12.5 MeV for all analyzed cross 

sections, a shift of the Fraunhofer crossover point 

towards large scattering angles is observed. And at 

energies of 4.5…10.5 MeV, the Fraunhofer crossover 

point disappears, the nearside component of the cross 

section dominates for all scattering angles, and the 

contribution of the farside component is small, which 

causes the transition from the picture of anomalous large 

angle scattering to the picture of Coulomb scattering.  

In our systematics, the modulus of the scattering 

matrix η, or the nuclear absorption phase δa, and the 

nuclear refraction phase δr are smooth monotonic 

functions of the angular momentum l, and the quantum 

deflection function Θ(l)=2d[δr(l)+σC(l)]/dl has a form 

inherent in the rainbow scattering pattern. 

The angular positions of the Airy minima A1,2 

extracted from the experimental data (circles on Fig. 3 

for A1,2) and calculated by us (squares on Fig. 3 for 

A1,2) obey the law of the inverse collision energy in the 

center-of-mass system. The nuclear rainbow angle θR, 

which is the minimum of the quantum deflection 

function (circles on Fig. 3 for θR), obeys the same law. 

The use of such an energy systematics made it possible 

to get rid of the ambiguities in the description of the 

experimental data.  

With a decrease in the collision energy, the intensity 

of nuclear refraction [2δr(l=0) on Fig. 3] systematically 

increases consistently throughout the studied energy 

range, even in the region of dominance of the Coulomb 

interaction. That is, we have shown for the first time that 

the transition to the NCBS pattern occurs in the presence 

of strong nuclear refraction. With increasing collision 

energy, the intensity of nuclear absorption [2δa(l=0) 

on Fig. 3] behaves smoothly: it increases in the region of 

the NCBS pattern, decreases in the region of the 

transition to the ALAS pattern, increases in the region of 

this pattern and decreases in the region of the nuclear 

rainbow pattern. That is, we have shown for the first 

time how a change in the intensity of nuclear absorption 

controls the change in the patterns of nucleus-nucleus 

scattering.  

CONCLUSIONS 

Applying the evolutionary model-independent S-

matrix approach, we have shown that a simultaneous 

correct description of the whole variety of the scattering 

pictures observed in the system 
4
He+

40
Ca at 

E=1…21 MeV/nucleon (including pictures of the 

nuclear rainbow, prerainbow, ALAS, and NCBS) can be 

achieved in a unified way using S-matrix moduli and 

real nuclear phases, which are smooth and monotonic 

functions of the angular momentum. The quantum 

deflection functions have a form characteristic of the 

nuclear rainbow case and are mostly symmetric in the 

vicinity of a minimum. The scattering matrix and the 

quantum deflection function for the system 
4
He+

40
Ca at 

E=4.5…82.0 MeV show smooth physically motivated 

variations with the projectile energy. The nuclear 

rainbow angle obeys the law of the reciprocal center-of-

mass energy dependence. Systematic description of the 
4
He-

40
Ca elastic scattering at E=1…21 MeV/nucleon is 

achieved in the presence of strong nuclear refraction and 

is in line with the rainbow interpretation of the data. 

The Airy minima of first and second orders have 

been successfully identified in the differential cross 

sections of the 
4
He-

40
Ca elastic scattering. Their angular 

positions obey the law of the reciprocal center-of-mass 

energy dependence, which is in conformity with the 

rainbow interpretation of the data. The use of this energy 

systematics has allowed us to get rid of the rainbow-shift 

ambiguity and, thus, to determine the nuclear part of the 

scattering matrix more reliably. 
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