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INTRODUCTION 

This year we celebrate the centenary of the birth of 

Academician D.V. Volkov, one of the founders of a new 

type of symmetry, such as Supersymmetry [1]. 

Nowadays Supersymmetry [2–4] plays an important 

role not only in the world of elementary particle 

physics, but also in nuclear, solid states and condensed 

matter physics, quantum mechanics, quantum optics and 

many other areas of contemporary physics. In this brief 

communication, we aim to point out some features of 

supersymmetry in the description of various physical 

systems, which favorably distinguish this approach from 

the conventional ones. 

To recap supersymmetric quantum mechanics 

(SQM), the approach we promote to describe physical 

systems, in Section 2 we recall the main points of the 

construction of isospectral quantum-mechanical 

Hamiltonians within the standard and extended 

schemes. In Section 3 we give various examples of 

systems from different areas of physics in which 

supersymmetry is hidden. On the contrary, in Section 4 

we consider the situation with exact supersymmetry and 

the outcomes arising from this fact. Сonclusions contain 

a brief discussion of the results and further directions of 

studies.   

A BRIEF RECAP OF SUPERSYMMETRIC 

QUANTUM MECHANICS 

Let’s refine main steps in constructing 

supersymmetric Hamiltonians. We can follow the 

factorization method proposed by Dirac and 

Schrodinger in the mid of 20
th

 of the last century. For 

the sake of simplicity, we will apply the Dirac-

Schrodinger formalism to one-dimensional stationary 

Hamiltonians, when, generally, the Hamiltonian 

operator is presented by 

                     𝐻0 = −
𝑑2

𝑑𝑥2 + 𝑉0(𝑥).                         (1) 

According to the formalism, one presents the initial 

Hamiltonian (1) as 

                                 𝐻0 = 𝐴†𝐴 + 𝜖,                            (2) 

with an analog of the creation/annihilation operators 

                 𝐴 =
𝑑

𝑑𝑥
+ 𝛽(𝑥),     𝐴† = −

𝑑

𝑑𝑥
+ 𝛽(𝑥).         (3) 

The unknown function 𝛽(𝑥), entering eq. (3), can be 

found from the Riccati equation 

                  −
𝑑

𝑑𝑥
𝛽(𝑥) + 𝛽2(𝑥) = 𝑉0(𝑥) − 𝜖.              (4) 

Though this construction is universal, and can be 

applied to any quantum-mechanical Hamiltonian, the 

general solution to the Riccati equation is absent in the 

analytic form. Put it differently, one cannot resolve eq. 

(4) for an arbitrary potential 𝑉0(𝑥), as well as the 

Schrodinger equation with Hamiltonian (1).  

However, there is a set of quantum-mechanical 

potentials, for which the exact solutions to the Riccati 

equation exist. These potentials are referred to as 

exactly-solvable potentials of Quantum Mechanics 

(QM). And in this case, we can apply the factorization 

scheme and determine the operators (3) and the 

factorization energy 𝜖 explicitly [5].   

 But it is not the end of the story. In 1984 Mielnik 

[6] proposed the way of constructing a new Hamiltonian 

from the original one, if a particular solution to the 

Riccati equation has known. If we denote this particular 

solution as 𝛽0(𝑥), then the new Hamiltonian will 

receive the structure of 

                     𝐻1 = 𝐴𝐴† + 𝜖 = −
𝑑2

𝑑𝑥2 + 𝑉1(𝑥)             (5) 

with the new potential 

                          𝑉1(𝑥) = 𝑉0(𝑥) + 2
𝑑

𝑑𝑥
𝛽0(𝑥).             (6) 

The so constructed new potential can be absolutely 

different in shape. However, the spectra of Hamiltonians 

𝐻0 and 𝐻1 turn out to be related to each other via the so-

called intertwining relations: 

                          𝐻1𝐴 = 𝐴𝐻0,   𝐻0𝐴† = 𝐴†𝐻1.            (7) 

When the starting Hamiltonian 𝐻0 is an exactly-

solvable one, we can choose  

                                   𝛽0 = −
𝜑𝜖

′ (𝑥)

𝜑𝜖(𝑥)
 ,                          (8) 

and the still arbitrary factorization energy 𝜖 becomes a 

part of the spectrum of one of the Hamiltonian partners. 

Specifically, as 𝜖 < 𝐸0 (where 𝐸0 is the ground state 

energy of 𝐻0), the factorization energy is the ground 

state energy of the new Hamiltonian 𝐻1. As a result, the 

intertwined Hamiltonians 𝐻0 and 𝐻1 are (almost) 

isospectral; their spectra differ only in the ground 

energy state Fig. 1). 

So far, we did not even mention Supersymmetry. 

However, there is a very close connection [7, 8] 

between operators 𝐴 and 𝐴† of (3) and the so-called 

supercharges 𝑄 and 𝑄† forming the part of the minimal 

Supersymmetry algebra: 

                                     {𝑄, 𝑄†} = 𝐻.                           (9) 

Then, the paired from the point of view of relations (7) 

Hamiltonians form the so-called supermultiplet. Since 

properties of a (super)multiplet members have to be the 

same, it is not surprising that the spectra of the 

Hamiltonians-superpartners are (almost) the same. 
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Fig. 1. Schematical spectrum of two intertwined 

Hamiltonians related by eqs. (7). Here 𝐻(1) ≡ 𝐻1, 

𝐻(2) ≡ 𝐻0 

One may wonder, does the presence of 

Supersymmetry turn out to be so important? We know 

that experimentally Supersymmetry is still a hidden 

symmetry of the Nature. However, the fact of absence 

of superpartners in the realm of particle physics tells us, 

first of all, about the broken Supersymmetry on the LHS 

action scale. So that, Supersymmetry (SUSY) may be 

non-manifest, and this fact can be illustrated by several 

examples.  
 

SYSTEMS WITH HIDDEN SUSY 

First example of hidden isospectrality is borrowed 

from gravitational physics. It is well known that 

gravitational waves are spin-2 fluctuations over a 

gravitational background. If, for simplicity, the non-

trivial background is chosen to be that of a 

Schwarzschild black hole, it is determined by the so-

called red-shift factor 𝑓(𝑟). In the linear approximation, 

dynamics of spin-2 fluctuations ℎ𝑠 over the 

Schwarzschild gravitational background is determined 

by a Schrodinger-type equation [9, 10] 

[
𝜕2

𝜕𝑟∗
2

+ 𝜔2 − 𝑉𝑠(𝑟)] ℎ𝑠 = 0 

with the Wheeler coordinate 𝑟∗ ∈ (−∞, +∞); 𝑠 = ±2. 

The effective potential of the axial perturbations over 

the background metric (linearly polarized gravitational 

waves) comes as follows: 

                 𝑉+2(𝑟) = −
3𝑓(𝑟)𝜕𝑟𝑓(𝑟)

𝑟
+ 𝑙(𝑙 + 1)

𝑓(𝑟)

𝑟2  .    (10) 

For the circularly polarized gravitational waves the 

effective potential becomes 

𝑉−2(𝑟)

=
2𝑓(𝑟)

𝑟3

9𝑀3 + 3𝑐2𝑀𝑟2 + 𝑐2(1 + 𝑐)𝑟3 + 9𝑀2𝑐𝑟

(3𝑀 + 𝑐𝑟)2
, 

                                   𝑐 =
𝑙(𝑙+1)

2
− 1.                         (11) 

Apparently, in eqs. (10), (11) 𝑙 are integers, starting 

from 𝑙 = 2. 

If we insert into eqs. (10) and (11) the red-shift 

factor for the Schwarzschild black hole, 𝑓(𝑟) = 1 −
𝑟+/𝑟, we encounter the difference between the effective 

potentials from (10) and (11). However, the effective 

Hamiltonians are (almost) isospectral, that can be find 

from the analysis of the effective potential shapes 

(Fig. 2). There are a lot of debates on the origin of such 

an isospectrality. It is shown for simple backgrounds 

[12]; for more exotic configuration of gravitational field 

the approach fails [13].  

Another example of dealing with physical systems 

with hidden SUSY comes from Quantum Optics. 

Quantum Optics by itself describes the natural 

interaction of bosonic (photons) and fermionic 

(electrons) subsystems of a medium. In the space of 

parameters of the light-matter interaction it may arise 

the Bose/Fermi Duality, that transforms, under some 

specific conditions, into SUSY [14]. 

Following [14], let’s consider the generalized Rabi 

model, which is determined by the following 

Hamiltonian describing a 2-level system interacting 

with a monochromatic wave: 

𝐻 = ℏ𝜔𝑎†𝑎 +
Δ

2
𝜎𝑧 + 𝑔1(𝑎†𝜎− + 𝑎𝜎+) 

                             +𝑔2(𝑎†𝜎+ + 𝑎𝜎−).                  (12) 

In (12), ∆ is the levels gap; 𝜔 is the boson field 

frequency; 𝑎† and 𝑎 are the bosonic ladder operators; 

and, finally, 𝑔1,2 are arbitrary constants of the light-

matter interaction. 

 
Fig. 2. The shapes of effective potentials for axial  

and polar spin-2 perturbations over the Schwarzschild 

background. Borrowed from Ref. [11] 
 

In framework of Quantum Optics, the generalized 

model with Hamiltonian (12) describes the dipole 

interaction of a monochromatic wave with the bi-level 

emitter. In the limit of zero-valued constants of 

interaction, the considered generalized model turns into 

the Jaynes-Cummings model. When two constants are 

the same, we get the Rabi model. If one of the 

interaction constants is small (say, 𝑔2 → 0), the near-

resonant consideration (at 𝜔~∆) corresponds to the 

rotating-wave approximation (RWA). In the strong 

interaction constants regime both interaction terms (co- 

and contra-rotating) should be taken into account. 

As it has been proved in [14], SUSY is a symmetry 

of the generalized Rabi model under the following 

condition: 

𝑔1
2 − 𝑔2

2 = ∆ ∙ 𝜔. 

Then, the supercharge has the form of 4 × 4 matrix 

𝑄 = (
0 𝑞̂
0 0

),   𝑞̂ = (
𝑔1/√𝜔 √𝜔 𝑎

√𝜔 𝑎 𝑔2/√𝜔
) . 

As usual for SUSY (cf. eq. (9)), 

{𝑄, 𝑄†} = 𝐻. 

For 𝑔1 = 𝑔2, SUSY is realized with ∆= 0. And 

Hamiltonian (12) turns into the standard Harmonic 

Oscillator with the energy shift. 

The next example comes from Condensed Matter 

Physics. It turns out that SUSY is a hidden symmetry in 

a topological insulator with Josephson junctions [15]. 

Such a system can be described by the Bogoliubov-de 
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Gennes equations, which, after the appropriate 

simplifications (see [15] for details), can be reduced to 

the system of differential equations 

(𝐸 + 𝑖𝑣𝜕𝑥)𝑓(𝑥) + ∆(𝑥)𝜑(𝑥) = 0, 

(𝐸 − 𝑖𝑣𝜕𝑥)𝜑(𝑥) + ∆∗(𝑥)𝑓(𝑥) = 0. 

Here 𝐸 is the energy of moving with the velocity 𝑣 in 

the positive 𝑥 direction spinning mode; ∆(𝑥) is the 

complex energy gap. It is easy to transform this system 

of equations in the equation of Witten’s Supersymmetric 

Quantum Mechanics (SQM) [7] 

𝐸2𝜓(𝑥) = (−𝑣2𝜕𝑥
2 + 𝑊̂2 + 𝑖𝑣𝜎𝑧

𝜕𝑊̂

𝜕𝑥
) 𝜓(𝑥), 

where 𝜓(𝑥) is the spinning mode state 

𝜓(𝑥) = (
𝑓(𝑥)
𝜑(𝑥)

), 

and the superpotential 𝑊̂(𝑥) is given by 

𝑊̂(𝑥) = (
0 ∆(𝑥)

∆∗(𝑥) 0
). 

This series of examples could be continued by notable 

systems with hidden SUSY in Quantum Mechanics 

[16], nuclear physics [17] and mesoscopy [18]. 

EXACTLY-SOLVABLE MODELS OF SQM 

WITH MULTI-WELL POTENTIALS 

In this part of the review, we will focus on models of 

N=4 Supersymmetric Quantum Mechanics [19], which 

are based on the Harmonic Oscillator potential 𝑉0(𝑥) =
𝑥2 and its deformations. 

First of all, let’s describe the technique behind the 

deformation of the potential shape. Looking at Fig. 1, 

one may notice that the original and the paired 

Hamiltonians are different in spectra by just one level. 

And if this new additional level has the energy less than 

the ground state energy of the original Hamiltonian, it 

defines the vacuum state of the paired Hamiltonian with 

new potential (6). To keep the coincident part of the 

both Hamiltonians spectra, the shape of the new 

potential shall be changed. The level of deformation 

depends on the interplay between the unfixed 

parameters that naturally arise in this scheme upon the 

definition of new, non-renormalizable, wave function 

𝜑𝜖(𝑥), corresponding the new ground state with the 

factorization energy 𝜖. For instance, the Harmonic 

Oscillator potential describes the system with one 

potential well;  its deformation may potentially form 

another well. So that, by controlled adding an additional 

level, we are able to get the (almost) isospectral 

quantum mechanical system with two-well potential. 

However, the clear impact of Quantum Mechanics in 

this case will consists in possible tunneling effects 

between the wells of the paired to the Harmonic 

Oscillator potential. Further, by adding a new level, 

lower than the ground level of the Hamiltonian 𝐻1, one 

can form another, paired to 𝐻1, Hamiltonian 𝐻2 with 

another potential, the shape of which will be different 

from the potential 𝑉1. Here, the interplay between 

parameters of the solutions may result as in two-well as 

well as in three-well potentials of different shapes. In 

the latter case, one is able to study more complex 

tunneling effects that provides a lot of possibilities to 

control quantum-mechanical processes. 

As an example of such controlling let us present 

results of modelling a wave package behavior in a 

symmetric and a non-symmetric two-well potentials for 

isospectal Hamiltonians, Figs. 3 and 4. Due to the 

difference in probabilities of the first, second and third 

levels in different wells of symmetric and asymmetric 

potentials, the probability flow of wave packages 

prepared with the corresponding energies essentially 

varies. It models the behavior of a quantum diode.   

 
 

Fig. 3. The relative probability of the first three levels  

in different wells of a symmetric two-well potential.  

See Ref. [20] for details 

 

 
 

Fig. 4. The relative probability of the first three levels  

in different wells of an asymmetric two-well potential. 

See Ref. [20] for details 

 

When the number of wells in the isospectral 

Hamiltonian potential becomes equal to three, the 

situation becomes more complicated. Here, with 

tunneling process, one can model properties of a 

quantum transistor, with different values of “current” 

flow in different wells, see Fig. 5. 

 

 
 

Fig. 5. The relative probability of the first three levels  

in different wells of an asymmetric three-well potential. 

See Ref. [20] for details 

One can generalized the description with adding the 

temporal dependence. For instance, it could be an 

external periodic driving force that, in real devices, is 

reproduced by a laser EM field. The interplay of 

parameters in the extended by the external field 
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frequency set allows one to reach the phenomenon of 

the so-called Coherent Tunneling Destruction (CTD) 

[21], when without changing the quantum character of 

the system it makes it possible to localize the initial 

wave packet in one of the wells. As an illustration of the 

CTD, in Fig. 6 we present the data of numerical 

simulations borrowed from Ref. [20]. 

 
 

Fig. 6. Numerical simulation of evolution of the 

Gaussian wave packet 𝛷(𝑥, 𝑇) in the external periodic 

driving force. We refer the reader to [20] for details 

 

Hence, the formalism of Supersymmetric Quantum 

Mechanics turns out to be helpful in modelling different 

processes such as tunneling, particles flow, diffusion 

and so on, in the controllable manner. The latter is 

achieved by the exactly-solvable character of the 

models in hands, when the Green’s functions are 

constructed out the explicitly known analytic 

expressions for the wave functions. Thus, evolution in 

such systems becomes, if not deterministic, then very 

predictable. 

CONCLUSIONS 

In conclusion, let us recall the main advantages of 

Supersymmetry that make this approach preferable to 

others.  

First, as it has been pointed out in one of the 

underlying work on Supersymmetry [22], 

supersymmetric models are superrenormalizable ones: 

the UV divergency problem, actual for standard field 

theories including the Standard Model, is completely 

absent for them. Unfortunately, our Universe is not 

supersymmetric; but this fact is about the energy scale 

on which SUSY is broken.  

Second, application of Supersymmetry as a tool to 

investigate various physical models in different regimes 

and on different energy scales has shown its self-

consistency and efficiency. We can just cite a few quotes 

from the modern literature in favor of this claim. For 

instance, the authors of Ref. [14] write: “ … optical and 

condensed matter systems at the SUSY points can be 

used for quantum information technology and can open 

an avenue for quantum simulation of the SUSY field 

theories.” In Ref. [23] one can read off: “ … the atomic 

nucleus 
195

Pt represents an excellent example of the 

dynamical U(6/12) supersymmetry. … certainly the best 

documented example of the manifestation of dynamical 

supersymmetry in atomic nuclei.” As it comes from 

reading Ref. [24], the potential of supersymmetry has 

not yet been definitively revealed, since the author “… 

brings the attention to the role of supersymmetry in 

quantum computation and quantum information more 

broadly, a subject much underexplored.” 

And finally, our research on the question posed in 

the title of these notes, shows the perspectives of 

applying the SQM formalism in studying quantum-

mechanical problems. Recently, two of us have 

extended the approach to include the temporal 

dependence into the game [25], that made it possible to 

relate CPT-invariant stationary Hamiltonians to their 

PT-invariant non-stationary partners. It opens new 

avenues in investigations of quantum-mechanical 

models with complex-valued potentials, having more 

reach structure of physical phenomena, and being 

applicable to an essentially wide class of physical 

systems.   
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