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The dual-amplitude model of the diffractive scattering of protons is implemented in Pythia8 Monte Carlo event 

generator, which allows to describe resonance production at low diffractive masses. The model includes the baryon

N  resonances at low
2
XM using a complex non-linear baryon Regge trajectory, the Roper resonance is also 

included using Breit-Wigner formula. At high
2
XM the model provides smooth

2
XM  - dependency. The results are 

compared with the available diffraction models in Pythia8. 
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As is known from many experimental results in 

high-energy hadron scattering, most events are localized 

within the small momentum transfer region [1]. The 

combination of high energies and small momentum 

transfers creates conditions for the realization of 

diffraction processes [2, 3]. The main types of 

diffractive processes are single diffraction (SD), in 

which one of the incoming protons dissociates, double 

diffraction (DD), in which both protons dissociate and 

central diffraction (CD) or double-Pomeron exchange 

where neither proton dissociates (Fig. 1). 

Let's consider the simplest of these three processes - 

the single diffraction. The primary theoretical approach 

to explaining single diffraction dissociation relies on 

Regge theory and the hypothesis of Pomeron exchange. 

In this model, the Pomeron is a theoretical construct, 

which does not carry charge, color, or flavor. It allows 

the exchange of momentum between particles without 

breaking them apart. 

  

             
 

Fig.1 a) single diffraction (SD), b) double diffraction (DD) and c) central diffraction (CD), where p – is proton,  

X(Y) – is a system of secondary hadrons 

In the model we are considering, double differential cross section is obtained from the elastic process using 

Regge factorization 
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proton form-factor,  2,inel XF t M  – the nucleon 

structure function, s – is the square of the center-of-

mass energy of the collision, t  – is the momentum  

transfer between colliding particles, XM – is the mass 

of the diffractive system. The most challenging building 

block of the expression (1) is the nucleon structure 

function, which describes the Pomeron-proton vertex. 

This structure function can be constructed from the 

similarity between the Pomeron-proton diffractive 

process and deep inelastic scattering (DIS), where 

Pomeron is associated with virtual photon [4]. This 

provides us with the following expression for inelastic 

structure function  
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 – kinematic factor taken from DIS, A  – is the model 

parameter,  2 2/B X px t M m t     – is the Bjorken variable,  2 ,
Pp

XT M t – the total Pp X cross-section. 

The core idea of the model is the connection  2 ,
Pp

XT M t  to the direct channel resonance decomposition of the dual 

amplitude. For this we use unitary condition and Veneziano duality [5]. Finally the  2 ,
Pp

XT M t  take the form 
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where   resb t
f t e  – is the form factor appearing in

Pp Pp  process,  *
2
XN

M  – is a complex Regge 

trajectory, which encapsulates the contributions of 

various baryon resonances to the scattering amplitude 

(see Figs. 2, 3). 

            
      Fig. 2 Re relates the mass of the baryon M and its      Fig. 3, Im  provides the Breit-Wigner widths  of the        

                                angular momentum J                                                              resonances 

 

The trajectory used in the model includes the 

following N resonances: N (1680), N (2220), N

(2700) [6,7]. Roper resonance N  (1440) is the first 

radially excited state of the nucleon. It does not lie on 

this trajectory. The contribution of Roper resonance to 

(3) is included separately using Breit-Wigner formula: 
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where b – is another model parameter, 1.37RM  GeV is the Roper mass, 0.18R  GeV is the Roper Breit-

Wigner width. 

The structure function (2) also includes the term corresponding to non-resonance contributions 
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It has the form 
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where , , ,bg bgc b    – are model parameters, fitted to 

the experimental data [5]. 

We implemented the model in Pythia8 Monte Carlo 

event generator for such reasons. Firstly, it is necessary 

to compare the model with other diffraction models that 

have already been implemented. At the same time, it is 

important to consider how well the model aligns with 

experiments and its real-world applicability. Finally, the 

model should be made available to the broader scientific 

community. 

Let’s consider available diffraction models in 

Pyphia8: SaS/DL (Schuler & Sjöstrand/Donnachie & 

Landshoff), MBR (Minimum Bias Rockfeller), ABMST 
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(Appleby & Barlow & Molson & Serluca & Toader) 

and User parametrization (quite limited approach). The 

model considered in this article was noted as JK model 

(Jenkovszky & Kuprash). The proposed model (JK 

model) describes resonances at low
2
XM , whereas other 

models (SaS/DL, MBR) do not exhibit such resonances 

(see Fig. 4). 

      
   Fig. 4. Comparison of existing diffraction models in Pythia 8 with the JK model 

In the JK and ABMST models peaks appear in the 

resonance region, but the ABMST model accounts for 

these resonances using the Breit-Wigner formula, tuned 

at low s . If we compare the generation and calculation 

they match (Fig. 5). 

  

Fig. 5. Comparison of the calculated JK model (dashed line) and the JK and ABMST generation  

(green and red lines) 
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As seen in the Figs. 4 and 5, the ABMST model also 

has peaks in the resonance region, but the differences 

between these models will be shown later. 

Let’s consider the differential cross-section with 

respect to the rapidity gap (see Fig. 6). Rapidity gap – is 

a region in the detector with very few or no particles. 

       

Fig. 6. Comparison of existing diffraction models in Pythia 8 with the JK model, where 
2ln , /Xy M s      

 
Fig. 7. Comparison of existing diffraction models in Pythia 8 with the JK model for 0 20.0y    

 

Fig. 7 shows that the ABMST model has peaks in 

the region where all other models do not show such 

peaks. Also, integrated SD cross-section was generated 

with Pyphia8 (Table). 
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Integrated SD cross-section 

Model 
SD  

SaS 12.38 mb 

MBR 10.91 mb 

ABMST 15.84 mb 

JK 8.38 mb 

 

CONCLUSIONS 

There are three available diffraction models in 

Pythia8. The SaS and MBR (default model) do not 

describe resonances at low
2
XM , which can be seen 

from the obtained histograms. These models provide 

smooth behavior of differential cross-section 
2/ Xd dM  

in the resonance region ( XM < 4 GeV). The ABMST 

model describes the resonances at low
2
XM using Breit-

Wigner formula, however, it is tuned at low s . 

Moreover, the JK model we implemented in Pythia8 

describes the resonances at low
2
XM using complex non-

linear baryon Regge trajectory and provides smooth
2
XM – dependency at high

2
XM like SaS and MBR 

models. 
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