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NUMERICAL ALGORITHM FOR PLASMA COOLING  

AND DECAY IN PLASMA LENS 

I.K. Kovalcuk 

Deutsches Elektronen-Synchrotron DESY,  

Hamburg, Germany 

The numerical algorithm for investigation of plasma cooling and decay after capillary discharge is described. 

The axially symmetric hydrodynamic model is considered. The set of hydrodynamic equations in partial derivatives 

is discretized and changed by set of ordinary temporal differential equations that is solved numerically. The 

analytical fitting to calculate spatial derivatives is used. The main spatial regions that are problem for numerical 

simulation are pointed out and analyzed. The way to avoid numerical problem near the capillary axis center and 

capillary wall boundary is presented and analyzed.  

PACS: 41.75.Jv, 52.38.Kd, 51.20.+d, 52.25.Fi 

 
INTRODUCTION 

The new plasma-based acceleration methods, either 

laser or beam driven, create new possibilities comparing 

to a traditional radio-frequency one. It allows to build 

compact accelerators. The strong electric field with 

strength about GV/cm allows to produce stable, 

ultrashort, high quality GeV electron beams with very 

low emittance and high brightness using high 

acceleration rate [1-4]. The laser pulse or accelerated 

electron beam are focused into narrow capillary channel 

and create plasma in them. The capillary discharge is 

used as a waveguide for short laser pulses. On another 

hand, a capillary discharge may be used as a plasma 

lens to focus and transport accelerated beam [1-3]. 
The capillary discharge is produced in the thin 

cylindrical tube, that has diameter about 1 mm and 

length of several centimeters, by external electric field. 

The capillary is filled by hydrogen or argon gas. This 

field is generated by high voltage pulse, that is supplied 

to external plane or cone electrodes that is placed on the 

cylindrical capillary ends, and has duration about one 

microsecond. External voltage may vary from several 

hundred volts up to about 10 kV. Excited current may 

start from several hundred Amperes and achieve several 

kilo Amperes. During several hundred nanoseconds the 

ionization of neutral gas and its heating up to several 

electron-Volts takes place. Plasma in this case may be 

almost fully ionized. 

In this talk the plasma decay after capillary 

discharge is investigated to define the recovery of 

acceleration conditions. 

1. THE PROBLEM  

To investigate the plasma cooling and decay the 

axially symmetric model is used. The capillary is 

assumed to be infinite in longitudinal direction. The 

working gas is hydrogen. The plasma temperature 

changing along capillary radius is from 3…5 eV at 

capillary center up to 0.1…0.2 eV on it wall. In this case 

it is supposed that plasma contains only atomic 

hydrogen as neutral particle. Besides neutral atomic 

hydrogen the plasma contains hydrogen ions and 

electrons. To investigate the plasma decay the three-

body recombination and thermal conductivity processes 

are considered. Plasma is considered as quasi-neutral 

and isothermal. The initial pressure of cold gas is about 

1 kPa. 

To describe the mentioned phenomena the one-

dimensional hydrodynamic equations in cylindrical 

coordinate system is used and may be presented as 

following 
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Here r is radius, t is time, ne, nn are charged (electron 

and ion) and neutral particles densities respectively, v is 

plasma velocity, ρ is mass plasma density, p is pressure, 

βtr is three-body recombination rate, kB is Boltzmann 

constant, κ is plasma thermal conductivity, T is plasma 

temperature. The boundary condition for these 

equations are: the velocity on capillary bound is equals 

to zero, the temperature is kept constant 0.1…0.2 eV. 

The initial pressure distribution is assumed uniform and 

equals to 144000 Pa. The temperature, ionization degree 

(respectively charged particle density) are set 

analytically close to experimental measurements. The 

spatial profile for neutral particles calculated from the 

temperature and plasma densities. The initial 

distribution velocity was assumed to be zero. The radial 

derivatives for all hydrodynamics variables on the 

capillary axis center are kept to zero (due to axial 

symmetry). It will be discussed in details below. 

2. SOME ALGORITHM FEATURES 

For numerical solution of the set of equation (1), the 

spatial discretization along capillary radius was carried 

out. The initial set of equations in partial derivatives is 

changed by the set of ordinary differential equations for 

every hydrodynamic variable at every spatial point. This 

set of equations is solved numerically. The spatial 

partial derivatives contained in the discretized set of 

equation are defined numerically on every time step. 
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To calculate the values for all spatial derivatives the 

fitting by analytical formulae is used. This way was 

chosen instead finite differences to prevent numerical 

instability near the capillary axis. Numerical simulation 

showed that there are two problem regions along the 

capillary radius. One of them is near the capillary axis 

center and second one is located close to the capillary 

wall. 

The difficulties near axis center are evident. On 

other hand the numerical problems in the region close to 

capillary wall are sufficiently complex, they were 

detected after numerous numerical studying. First of all, 

let us consider numerical problem in spatial region close 

to the capillary axis center. The reason for these 

problems is the following terms in hydrodynamics 

equations: 
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They contain small value in denominators. If spatial 

derivatives are calculated with low precision it may 

cause numerical instability in this region. To avoid these 

difficulties the fitting analytical formula is used. The 

radial profile for every hydrodynamic variable is 

presented as power series relatively capillary radius and 

has the following form: 
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   ( )  .  (3) 

Here cj(t) are fitting coefficients, depending on time and 

are calculated on every time step. To define the 

coefficients the list square method is applied, that is 

expressed by following minimization problem for fitting 

coefficients: 
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To minimize function F(c1, c2,…, cN) additional 

constraints can be added, scaling of input data along the 

horizontal and vertical axis may be used. 

Here N is coefficient number, M is spatial point 

number,        is value of any hydrodynamic variable 

in the point ri,   is regularization parameter. 

The first term in Eq.(4) immediately is responsible 

for the list square method, the second term corresponds 

Tikhonov's regularization method that may be used if 

coefficients fitting search is unstable and minimization 

problem is ill posed [5, 6]. The function to be 

minimized may be supplemented by additional 

constraints, that may express spatial analytical 

properties of hydrodynamic variables. Besides due to 

linearity fitting problem the scaling along both axes may 

be used. 

For numerical simulation the MATHEMATICA 

version 13.0 package is used. The build-in function 

“findFitt” allows to realize above mentioned features. 

The numerous numerical investigations allow to reach 

physically reasonable results in both problem regions. 

However, it is necessary to extend these properties to 

long times about a few microseconds, that correspond to 

experimental results. 

 

 

 

 

3. PRELIMINARY NUMERICAL RESULTS  

First of all, let us briefly consider the preliminary 

numerical investigation for much process time. The 

experiment duration is a few microseconds. In Figs. 1-3 

temperature, electron density and pressure profiles the 

simulation for a time moment t = 2 µs are presented. As 

it is seen the start spatial point is shifted from capillary 

axis center. This displacement is approximately equal 

5% from capillary radius. This displacement allows to 

reduce incorrect numerical results near axis. 

Nevertheless, problems are remaining in this region. 

Especially it is seen on Figs.1 and 2, The 5% 

displacement was chosen due to more or less physically 

correct results obtained in this region. 

The biggest problem is observed in Fig. 3 where the 

radial pressure profile is presented. Regardless of more 

or less reasonable dynamics of temperature and electron 

density, when these values are decreased during plasma 

decay process, the significant drawback is observed in 

Fig. 3. The pressure distribution is remaining almost 

uniform and average pressure level is decreased at this 

time from the initial value of about 144000 Pa. But on 

another side, there is large pressure jump on the 

capillary wall. At short times this jump may be 

neglected. This jump is appearing always from initial 

program cycles. It does not depend from the spatial 

point distribution, calculation time step and another 

program parameters. To avoid this jump, the additional 

analytical and numerical investigations were required 

that will not be presented here. So, main way how to 

obtain physically correct results will be considered 

latter. 

 

Fig. 1. Temperature profile at t = 2 µs. Green line 

corresponds to initial temperature distribution, blue line 

is calculated one, brown line is obtained by fitting 

 

Fig. 2. Electron density profile at t =2 µs. Blue line 

corresponds to calculated result, brown line 

corresponds to the initial electron density profile 
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Fig. 3. Pressure profile at t = 2 µs. Blue line 

corresponds to calculated result, brown line is fitted 

result 

4. PROBLEM WITH SOLUTION IN THE 

REGION CLOSE TO THE CAPILLARY 

WALL BOUNDARY 

As it follows from the boundary condition for the 

velocity and momentum equation (1a) the pressure 

gradient on the capillary wall should be kept to zero. 

This circumstance was checked in the program. The 

detailed numerical investigations showed that this 

condition is violated during program running. 

Moreover, the pressure gradient is continuously 

growing. This fact is not understood from numerical 

algorithm point of view. To prevent this growth the zero 

gradient condition may be used as additional constraint 

(equality) for fitting coefficients that has following form 
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where    is the radius of the capillary boundary. In 

Eq. (5) another constraint is presented that takes into 

account equality to zero of the pressure gradient on the 

capillary axis center. But as it was turning out only this 

one condition is not sufficient to obtain proper result. 

For convenience, the pressure may be presented in the 

following form (pressure deviation from the average 

level): 
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where   is the average pressure level. The result of 

pressure deviation fitting with constraints (5) are 

presented in Fig. 4. 

 

Fig.4. One example of pressure profile fitting for 

pressure deviation from the average pressure level. Blue 

line corresponds to the calculated result, brown line is 

the fitted one 

 

As it is seen in this figure the conditions of Eq. (5) are 

satisfied. But fitting results is not sufficiently 

satisfactory (it is necessary to remind that the average 

level is about 144000 Pa). Using Tikhonov’s 

regularization and scaling along the radial and pressure 

deviation axes allowed significantly to improve fitting 

process. The corresponding result is shown in Fig. 5. 

 
Fig. 5. The best fitting results for the pressure profile. 

Lines for calculated (blue line) and fitted (brown line) 

pressure deviation coincide 

Regularization parameter and scaling coefficients 

were picked up manually. The gradient of profile 

presented in Fig. 5 are shown in Fig. 6. 

 

 
Fig. 6. Pressure gradient for the profile presented  

in Fig.5 

5. TIME EXTENDED INVESTIGATIONS 

WITH MENTIONED CONSTRAINTS 

 Numerous numerical investigations showed stable 

operation of suggested approach in the wide range of 

pressures near the capillary wall boundary. But the 

difficulties remain near the capillary axis center. 

 

Fig. 7. Temperature profile for t ≈ 60 ns. Green line 

corresponds to the initial temperature profile, blue line 

is the calculated result, and brown line is the fitting 
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Fig. 8. Electron density profile for t ≈ 60 ns. Blue line 

corresponds to calculated result and brown line is the 

initial electron density profile 

In Figs. 7, 8 the temperature and electron density 

profiles are shown at t≈60 ns, respectively. As it is seen 

in the spatial region close to the axis center the result is 

physically incorrect.  

To solve this problem the presented above approach 

is used. Let us return to terms in Eq. (2). As it was 

mentioned in the section 3 these terms are reason of the 

numerical problems near the capillary axis center due to 

the possible mistakes in variables in nominators of these 

terms. So, the higher precision is required to fit the 

following variables 

          
  

  
.      (7) 

It is possible analytically to show that in the axially 

symmetric case the following limits on the axis center 

for terms in Eq. (2) are valid 
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The analytical asymptotic for different hydrodynamic 

variables are presented in the following expressions: 
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Here    is the pressure,    is the temperature,       is 

electron and neutral particles density on the axis center. 

From the expressions (9) – (14) the constraints for 

fitting coefficients for listed hydrodynamics variables 

are following:  

for velocity v     →              ,  

for pressure p    →          0, 

for fluxes         →                          , 

for          →                        

for thermal flux   
  

  
  →                 

Expressions presented on the right hand are constraints 

for the hydrodynamic variables taking into account its 

analytical behavior in the region close to the capillary 

axis center. 

In Figs. 9, 10 the pressure deviation and velocity 

profiles demonstrate influence of condition near the 

capillary axis center on the numerical results. Additional 

constraints in the region close to the axis center allowed 

to bring spatial start point immediately close to capillary 

axis center on distance about 0.1% of the capillary 

radius. This start point position is almost not 

distinguishable from the position of the axis center. 

 
Fig. 9. Example of pressure deviation profile fitting 

near capillary axis for t = 9.3 ns. Blue line corresponds 

the numerical results, brown line is the fitting 

 

 
Fig. 10. Example of velocity profile fitting near 

capillary axis center for t = 9.3 ns. Blue line 

corresponds the numerical results, brown line is the 

fitting 

Despite reached improvement, some problems 

remain. The velocity profile near the axis center should 

be similar to parabola. Actually, for the fitting profile it 

is true. Both linear terms in power series are zero. The 

spatial region where quadratic term dominates is very 

small, thus contribution of higher power terms is 

significant in the immediate vicinity from the axis 

center. On the other hand, the precision of the velocity 

fitting is not sufficient. The possible reason may be the 

complex velocity profile for fitting. 

CONCLUSIONS 

The algorithm for numerical investigation of plasma 

cooling and decay after the capillary discharge in 

plasma lens is considered. The axially symmetric 

hydrodynamic model is used. The initial set of 

equations in partial derivatives are discretized along the 

capillary radius and changed by the temporal set of 

ordinary differential equations. The analytical fitting of 

spatial profiles for hydrodynamic variables is used. 

These analytical formulae are used to obtain spatial 

derivatives. 
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 The detected numerical problems are presented. It is 

pointed out, that there are two spatial regions where 

numerical problems are arising. One of these regions is 

located near the capillary axis center, another near 

capillary wall boundary. The reason of numerical 

difficulties is investigated analytically and numerically. 

The general approach to prevent mentioned numerical 

problems is described. It is based on analytical fitting 

with additional constraints considering analytical 

properties of the hydrodynamic variables. 

It was shown that the proposed approach allows 

significantly to improve numerical solution in the 

problem regions. But some problems are remaining. It is 

necessary to improve execution of the program to 

extend its time from about ≈10…15 ns until a few 

microseconds. 
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