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The definition of the space of trajectory phase moments is introduced. The nonlinear differential equations of
motion of a charged particle in the field of an electrostatic quadrupole lens in trajectory phase coordinates are
transformed into a system of four linear ordinary differential equations in the third-order trajectory phase
momentum space with 28 unknowns. The missing equations are obtained by applying a formal procedure of
immersion of the original equations in the space of trajectory phase moments. The solution of the obtained complete
system of equations is sought in the form of a matrizant, i.e., the matrix of phase moment transformation along the
motion of a charged particle, which determines the ion-optical properties of an electrostatic quadrupole lens.

PACS: 41.85.p; 41.85.Gy; 41.85.Lc

1. INTRODUCTION

The Institute of Applied Physics of the National
Academy of Sciences of Ukraine is developing the
concept of a compact nuclear microprobe based on an
immersion probe-forming system [1-3], which will
significantly reduce the size of the microprobe
installation and improve its resolution. The ion-optical
scheme of such a probe-forming system includes (along
the ion beam) a doublet of electrostatic quadrupole
lenses (DEQL), an accelerating tube, an angular
aperture, a scanner, and a doublet of magnetic
quadrupole lenses for final beam focusing. The ion-
optical properties of the accelerator tube and magnetic
quadrupole lens including up to the third order were
determined earlier using the matrizant method [2, 4].
The inclusion of the DEQL in the probe formation
process will allow balancing the demagnifications in
both transverse directions. Since it is assumed that the
DEQL is located in front of the accelerator tube, this
location is under high potential, which in turn
determines the requirements for low power consumption
for the doublet excitation, in contrast to magnetic
quadrupole lenses. Similarly, the design of the DEQL is
preferred due to the low beam energy in this region. In
order to model the optics of such an immersion probe-
forming system, this paper considers the construction of
a matrizant of an electrostatic quadrupole lens up to the
third order in order to determine the physical and
geometrical parameters of the ion-optic elements of the
system. The fundamentals of the matrizant method are
discussed in [5, 6], which are based on differential
algebra and the matrix method for solving systems of
linear ordinary differential equations.

2. CONSTRUCTION OF A SYSTEM OF
DIFFERENTIAL EQUATIONS IN THE
SPACE OF TRAJECTORY PHASE
MOMENTS

The trajectory equations of motion of a charged
particle in an electric field in a rectangular Cartesian
coordinate system, which describe the ion optics of
systems with a rectilinear axial trajectory, are as
follows [7]
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where g,m,p — are the charge, mass and momentum of
the particle, E\, E,, E. — components of the electric field.

Equation (1) is a second-order nonlinear differential
equation with respect to the trajectory phase coordinates
(x, x', v, y"). Fig. 1 shows a schematic representation of
an electrostatic quadrupole lens. Here, the poles are
positioned in such a way that the ion beam is focused in
the xOz plane, and the lens 1is defocused in
the yOz plane.

Fig. 1. Schematic representation of an electrostatic
quadrupole lens

For such poles, the electrostatic scalar potential can
be represented as a series with the fourth order of
coordinates x,y [7]
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where U,(z) — quadrupole component of the field.
The quadrupole component can be represented as
Vi(z
U, () = X2 3)
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where V — potential at the pole of the lens;
r, — radius of the lens aperture;
1(2) — longitudinal field distribution profile (Fig. 2).
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Fig. 2. Representation of the longitudinal distribution
profile of the quadrupole field component: 1 —real field
distribution; 2 — approximation of the field distribution

with reduction to the effective length (rectangular
model)

In Fig. 2 the effective field length L.;~=/+(0.9...1.1)r,,
where /=z,-z| the physical length of the lens.

Taking into account (2), the electrostatic field can be
represented in the form with dependence on the
coordinates x, y not higher than the third degree
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Taking into account the fact that the trajectory
coordinates x,y and the momentum spread in the beam
are small parameters, we can use a series expansion in
small parameters

0
E,(x,y, z)=—a—(5

m_ {1 25+2

2

™y, z>} ©)
p po

where pj - is the average momentum of the ions in
the beam.

Let's substitute the ratio (4) and (5) into (1),
multiplying the factors, we leave only the third order of
smallness terms in the trajectory phase coordinates
xx'y,y' and the second order of smallness terms
containing o, we obtain
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where 1(2) = B%1(2). @)
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Let us introduce the generalised coordinates of the

trajectory phase moments in the form
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Equation (6) in the generalised coordinates of
trajectory phase moments is written as
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As can be seen, equations (9) are linear with respect
to the coordinates of the trajectory phase moments (8).
However, in (9) there are 28 unknown functions and 4
equations. The expansion of equations (9) to 28 is
carried out according to the formal procedure of
immersion in the phase momentum space.
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A similar procedure is used for unknown functions
®,;, i=3...14. Functions os and o4 contain terms with 5-
th i 4-th order by trajectory phase coordinates and
momentum spread, respectively.

In this way, we obtained two systems of linear
ordinary differential equations with respect to the
trajectory phase moment coordinates that approximate
the original nonlinear differential equations (5) in the
domain of trajectory phase coordinates with the 4-th and
5-th order of smallness in terms of the spread in

momentum and trajectory phase coordinates. The
resulting equations can be written in matrix form
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where the matrices P, and P, have a block form
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where blocks can be written in the form

0 1 0
T1,1 :Tz,z = _Bgr ol H1,1 = H2,2 = BzT

. 0o o] 0 0
Y27 2820 0] Mt | 282t o)

0 0 0 0
Tia=|1 42 1 2 *
' BB =P’ BT O
GB B 2[3 B
0 0 0 O
H =
13 —%BZ’L‘”—BA’EZ Le2r g2 o
0 O 0 0 00
T = i)
14 B 0 —pr —%th’ 00
0 0 O 0 0 O
14

B2t 0 20
T3,3_ 2 ’
0 26t 0 1
0 0 -3p% 0
0o 3 0 0
B2 0 2 0
H3,3_ 2 I}
0 2%t 0 1
0 0 3p* 0
[0 2 0 1 0 O]
Bt 0 1 0 1 0
0 2%z 0 0 0 1
T4,4_ 2
B 0 0 0 2 0
0 B> 0 B o0 1
| 0 0 p*t 0 2%t 0]
0 2 0 1 0
Bt 0 1 0 1
0 26>t 0 0 0
H4,4_ 2
B2z 0 0 0 2
0 B 0 P 0
| 0 0 Bt 0 -2p%
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3. ELECTROSTATIC QUADRUPOLE LENS
MATRIZANT

For equations (11), we introduce the concepts of the
matrizant R,(z,29) and R(z,z9) respectively, which are
defined as the matrix of transformation of coordinates of
trajectory phase moments from the z, plane to the z
plane in the form

&)X(Z) = RX(Z’ZO)&)X(ZO)y
D, (2) =R, (2,25) D (2o)

It is worth noting the properties of the
matrizant

(13)
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Substituting (13) into (11), we obtain
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dR,(z,2p) (1)
— 4 =P, (2)-R,(z,2),
with initial conditions
Ry (20:20) =E, (16)

where E — unit matrix.
Matrizants R,(z,z9) and R (z,z¢) have the same block
structure as the matrices P,,(2)
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T e 0 R 0|
|0 0 0 R
(o1l 12 13 14 7)
RM RM2 R RM]
0 R¥? 0 0
Ry(Z’ZO): 33
0 0 Ry' 0
44
0 0 0 Ry |

From the form (15) and (17) we can write
drR>(z,2,)
dz

drRY(z,z,)
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Let us consider the so-called rectangular field
model, when the smooth longitudinal field distribution
is replaced by a rectangular distribution with the
effective field length L. (see Fig. 2). This distribution
can be written as a superposition of two step functions

(8]

=T1(2)- Ri’l(z, Zp),
(18)

W) =[0(z2-20)-O(z2-25—Le)],  (19)
where 6(z) single asymmetric step function
For the rectangular model of the longitudinal field
distribution (19), we have the solution of equations (18)
in the form
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Once the elements of the matrizants are defined

e2y)

Ri’l(z, z,) and Ri,’l(z, Z,) the equations can be written
D, 1(2) = x(2) =
=11(Z,20)% +12(Z,29) % + 0, +0g,
D, 2(2) =x(2) =
=1p1(2,20) %0 +15,2(2,29) Xy + 05 + 05,
D,,(2)=Yy(2) =
= h1(2,20) Yo + U2 (2,29) Yo +0, + 03,
D,,(2)=Y'(2) =
=0p1(2,20) Yo +Up,2(2,29) Yo +0, + 03,
where X(2) = %o, X'(29) = %o, Y(Z0) = Yo. ¥'(Z0) = Yo.
0, and o3 — functions of the second and third order of

smallness in terms of momentum spread and trajectory
phase coordinates, respectively.

Diagonal blocks of matrizants Rf‘s, Rf’A, Ri’B, R;M

(22)

can be obtained by the following formal procedure
3 3
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The same procedure is used for @, ;, where i=5...14.
As can be seen from (12), the elements of the square
matrices Py(z) and P,(z) include not only the profile
function 7(z), but also its derivatives, which are
expressed through the asymmetric impulse function
®(z) [8], known in physics as the Dirac function and its

derivatives

d¥oz+a) d*Dpz+a)
dz® B dz&b ’
Given the equality of (12), (20), (21), (23) and (24), the

off-diagonal blocks of matrizants R:?, R:3, RM,
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Ri,'z, R§’3, Ri,"‘ are calculated according to the

formula [6]

Rl'(ky) (z,20) =
k z . . (25)
2 [ Rity @ 0P OR) (6. z0)dt.

j=1+l 7

4. CONCLUSIONS

Based on the introduction of the definition of the
trajectory phase momentum space, a system of linear
ordinary differential equations is obtained that
approximates the original nonlinear differential
equations of motion of a charged particle in the field of
an electrostatic quadrupole lens with the third order of
trajectory phase coordinates. The resulting system of
differential equations is solved by the matrix method by
introducing the concept of matrizant. For a rectangular
model of the longitudinal distribution of the electric
field in a quadrupole lens, a matrizant is obtained that
determines the third-order ion-optical properties of the
lens. Taking into account the fact that the matrizants of
the electrostatic accelerating structure (accelerator tube)
and the magnetic quadrupole lens were obtained earlier,
it is possible to simulate the motion of the ion beam in a
compact nuclear microprobe in order to determine the
geometric and physical parameters of the immersion
probe-forming system.
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