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DETERMINATION OF THE ION-OPTICAL PROPERTIES OF AN 

ELECTROSTATIC QUADRUPOLE LENS AS PART OF A COMPACT 

NUCLEAR MICROPROBE 

V.V. Zhurakulov, H.E. Polojiy, O.G. Ponomarev 

Institute of Applied Physics, National Academy of Sciences of Ukraine, Sumy, Ukraine 

The definition of the space of trajectory phase moments is introduced. The nonlinear differential equations of 

motion of a charged particle in the field of an electrostatic quadrupole lens in trajectory phase coordinates are 

transformed into a system of four linear ordinary differential equations in the third-order trajectory phase 

momentum space with 28 unknowns. The missing equations are obtained by applying a formal procedure of 

immersion of the original equations in the space of trajectory phase moments. The solution of the obtained complete 

system of equations is sought in the form of a matrizant, i.e., the matrix of phase moment transformation along the 

motion of a charged particle, which determines the ion-optical properties of an electrostatic quadrupole lens. 
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1. INTRODUCTION 

The Institute of Applied Physics of the National 

Academy of Sciences of Ukraine is developing the 

concept of a compact nuclear microprobe based on an 

immersion probe-forming system [1-3], which will 

significantly reduce the size of the microprobe 

installation and improve its resolution. The ion-optical 

scheme of such a probe-forming system includes (along 

the ion beam) a doublet of electrostatic quadrupole 

lenses (DEQL), an accelerating tube, an angular 

aperture, a scanner, and a doublet of magnetic 

quadrupole lenses for final beam focusing. The ion-

optical properties of the accelerator tube and magnetic 

quadrupole lens including up to the third order were 

determined earlier using the matrizant method [2, 4]. 

The inclusion of the DEQL in the probe formation 

process will allow balancing the demagnifications in 

both transverse directions. Since it is assumed that the 

DEQL is located in front of the accelerator tube, this 

location is under high potential, which in turn 

determines the requirements for low power consumption 

for the doublet excitation, in contrast to magnetic 

quadrupole lenses. Similarly, the design of the DEQL is 

preferred due to the low beam energy in this region. In 

order to model the optics of such an immersion probe-

forming system, this paper considers the construction of 

a matrizant of an electrostatic quadrupole lens up to the 

third order in order to determine the physical and 

geometrical parameters of the ion-optic elements of the 

system. The fundamentals of the matrizant method are 

discussed in [5, 6], which are based on differential 

algebra and the matrix method for solving systems of 

linear ordinary differential equations. 

2. CONSTRUCTION OF A SYSTEM OF 

DIFFERENTIAL EQUATIONS IN THE 

SPACE OF TRAJECTORY PHASE 

MOMENTS 

The trajectory equations of motion of a charged 

particle in an electric field in a rectangular Cartesian 

coordinate system, which describe the ion optics of 

systems with a rectilinear axial trajectory, are as 

follows [7]  
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where  q,m,p – are the charge, mass and momentum of 

the particle, Ех, Еу, Еz – components of the electric field. 

Equation (1) is a second-order nonlinear differential 

equation with respect to the trajectory phase coordinates 

(х, х', у, у'). Fig. 1 shows a schematic representation of 

an electrostatic quadrupole lens. Here, the poles are 

positioned in such a way that the ion beam is focused in 

the хОz plane, and the lens is defocused in 

the уОz plane. 

 
Fig. 1. Schematic representation of an electrostatic 

quadrupole lens 

For such poles, the electrostatic scalar potential can 

be represented as a series with the fourth order of 

coordinates х,у [7] 
4 4

2 2 2
2

( )( )
( , , ) ( )( )

12

U z x y
x y z U z x y

 
   ,       (2) 

where U2(z)  quadrupole component of the field. 

The quadrupole component can be represented as 
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where V  potential at the pole of the lens; 

ra  radius of the lens aperture; 

τ( )z   longitudinal field distribution profile (Fig. 2). 
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Fig. 2. Representation of the longitudinal distribution 

profile of the quadrupole field component: 1  real field 

distribution; 2  approximation of the field distribution 

with reduction to the effective length (rectangular 

model) 

In Fig. 2 the effective field length Leff=l+(0.9...1.1)ra, 

where l=z2-z1 the physical length of the lens.  

Taking into account (2), the electrostatic field can be 

represented in the form with dependence on the 

coordinates x, y not higher than the third degree 
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. (4) 

Taking into account the fact that the trajectory 

coordinates х,у and the momentum spread in the beam δ 

are small parameters, we can use a series expansion in 

small parameters 
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where p0 - is the average momentum of the ions in 

the beam. 

Let's substitute the ratio (4) and (5) into (1), 

multiplying the factors, we leave only the third order of 

smallness terms in the trajectory phase coordinates 

x,x',y,y' and the second order of smallness terms 

containing δ, we obtain 
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where 2
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Let us introduce the generalised coordinates of the 

trajectory phase moments in the form 
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(8) 

Equation (6) in the generalised coordinates of 

trajectory phase moments is written as 
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As can be seen, equations (9) are linear with respect 

to the coordinates of the trajectory phase moments (8). 

However, in (9) there are 28 unknown functions and 4 

equations. The expansion of equations (9) to 28 is 

carried out according to the formal procedure of 

immersion in the phase momentum space. 
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A similar procedure is used for unknown functions 

Φу,і, і=3…14. Functions  о5 and о4 contain terms with 5-

th і 4-th order by trajectory phase coordinates and 

momentum spread, respectively. 

In this way, we obtained two systems of linear 

ordinary differential equations with respect to the 

trajectory phase moment coordinates that approximate 

the original nonlinear differential equations (5) in the 

domain of trajectory phase coordinates with the 4-th and 

5-th order of smallness in terms of the spread in 

momentum and trajectory phase coordinates. The 

resulting equations can be written in matrix form 
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where the matrices Рx and Рy have a block form 
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where blocks can be written in the form 
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3. ELECTROSTATIC QUADRUPOLE LENS 

MATRIZANT 

For equations (11), we introduce the concepts of the 

matrizant Rx(z,z0) and Ry(z,z0) respectively, which are 

defined as the matrix of transformation of coordinates of 

trajectory phase moments from the z0 plane to the z 

plane in the form 
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It is worth noting the properties of the 

matrizant 

Rx(y)(z3,z1)=Rx(y)(z3,z2) Rx(y)(z2,z1).  (14) 

Substituting (13) into (11), we obtain 
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with initial conditions 

( ) 0 0( , ) ,x y z z R E    (16) 

where Е – unit matrix. 

Matrizants Rx(z,z0) and Ry(z,z0) have the same block 

structure as the matrices Рx(y)(z) 
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From the form (15) and (17) we can write 
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Let us consider the so-called rectangular field 

model, when the smooth longitudinal field distribution 

is replaced by a rectangular distribution with the 

effective field length Leff (see Fig. 2). This distribution 

can be written as a superposition of two step functions 

[8] 

0 0τ( ) [ ( ) ( )]effz z z z z L      , (19) 

where θ(z) single asymmetric step function 

For the rectangular model of the longitudinal field 

distribution (19), we have the solution of equations (18) 

in the form  
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Once the elements of the matrizants are defined 
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where 0 0 0 0 0 0 0 0( ) ,  ( ) ,  ( ) ,  ( ) ,  x z x x z x y z y y z y        

о2 and о3 – functions of the second and third order of 

smallness in terms of momentum spread and trajectory 

phase coordinates, respectively. 

Diagonal blocks of matrizants 3,3 4,4 3,3 4,4,  ,  ,  x x у уR R R R  

can be obtained by the following formal procedure 
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The same procedure is used for Фy,i, where і=5…14.  

As can be seen from (12), the elements of the square 

matrices Рx(z) and Рy(z) include not only the profile 

function τ(z), but also its derivatives, which are 

expressed through the asymmetric impulse function 

( )z  [8], known in physics as the Dirac function and its 

derivatives 
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Given the equality of (12), (20), (21), (23) and (24), the 

off-diagonal blocks of matrizants 1,2 1,3 1,4,  ,  ,  x x xR R R

1,2 1,3 1,4,  ,  y y yR R R  are calculated according to the 

formula [6] 
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4. CONCLUSIONS 

Based on the introduction of the definition of the 

trajectory phase momentum space, a system of linear 

ordinary differential equations is obtained that 

approximates the original nonlinear differential 

equations of motion of a charged particle in the field of 

an electrostatic quadrupole lens with the third order of 

trajectory phase coordinates. The resulting system of 

differential equations is solved by the matrix method by 

introducing the concept of matrizant. For a rectangular 

model of the longitudinal distribution of the electric 

field in a quadrupole lens, a matrizant is obtained that 

determines the third-order ion-optical properties of the 

lens. Taking into account the fact that the matrizants of 

the electrostatic accelerating structure (accelerator tube) 

and the magnetic quadrupole lens were obtained earlier, 

it is possible to simulate the motion of the ion beam in a 

compact nuclear microprobe in order to determine the 

geometric and physical parameters of the immersion 

probe-forming system. 
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