
 

65 

FIRST-ORDER QED PROCESSES FOR VIRTUAL PHOTONIC STATES 

IN THE FIELD OF A LINEAR-POLARIZED WAVE 

O. Voroshylo, O. Makarenko, O. Lebed  
Institute of Applied Physics of National Academy of Science of Ukraine, Sumy, Ukraine  
 

In order to construct a theory of 2nd-order processes through probabilities describing 1st-order processes, a 

theory of 1st-order processes with virtual photon states was developed 

PACS: 12.20.-m, 34.80.-i 

 

INTRODUCTION 

Fig. 1 shows all possible 1st order processes that can 

occur in the field of an electromagnetic wave:   

a) Photon emission by an electron during scattering in 

an electromagnetic wave field.   

b) Annihilation of an electron-positron pair in the field 

of a monochromatic electromagnetic wave. 

c) Formation of an electron-positron pair by a photon 

in the field of a monochromatic electromagnetic 

wave. 

d) Absorption of a photon by an electron in the field of 

a monochromatic electromagnetic wave. 

 

 
Fig. 1. Feynman diagrams of 1st order processes in a 

wave field 

Fig. 2 shows diagrams of 2nd-order processes with a 

fine structure constant with a photonic intermediate 

state, which are described by one diagram. Although it 

may seem like these diagrams can be composed of the 

diagrams of the 1st order process from Figure 1 and this 

is at the amplitude level, during the calculation of the 

probability in standard way [1] due to the procedure of 

finding the spur, the terms are mixed and the possibility 

of writing the probability of the 2nd-order process 

through to the 1st-order probabilities disappears. 

However, there is a possibility to express the 

probabilities of 2nd order processes in terms of 1st 

order probabilities, but these probabilities must be 

written in terms of first order probabilities that take into 

account the polarization properties of intermediate 

states and are obtained for intermediate states are out  

the mass surface. Due to these considerations, it is a 

separate task to obtain these probabilities. 

 

Fig. 2. Feyman diagrams of processes of the 2nd order 

according to the constant of the fine structure with a 

photon intermediate state described by one diagram:   

a – the process of electron scattering by a muon;  

b – the process of converting an 
ee pair  

into a muon pair  

AMPLITUDE  

The amplitude of a process of photon emission by 

an electron in a wave field (see Fig. 1a) after integration 

over the 4-coordinate of the vertex can be written as: 
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where fk , fe  are 4-momentum and 4-vector of 

polarisation of the emitted photon, ip , fp  are 4-

momentums of the initial and final electrons; the tilde 

above the 4-momentum indicates the corresponding 

quasimomentum [1, 2], pu
 
is the bispinor of a free 

electron; C  is the normalizing constant, a parameter 

esr  determines the deviation of the photon state from 

the mass surface. 

Contrary to [2] in expressions (1)-(10) we consider 

that 02 fk . 

Note that the amplitudes of other 1st order processes 

in terms of the fine structure constant can be obtained 

from (1)-(10) due to the cross-invariance of these 

processes by simple substitutions. 

PROBABILITY 

The differential probability of the process of a 

photon emission by an electron in a wave field per unit 

time can be written in the form of partial components: 
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where V  is the normalizing volume, T  is the infinite 

time interval, 0w  is the normalizing constant 

To describe the polarization properties of a virtual 

photon state, consider an orthonormal basis in 4-

dimensional space: 
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where    30=,= eek  k  is the wave vector. 

The 4-vector (3) expanded in basis (14) has three 

components:
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which corresponds to the three possible polarizations of 

the virtual photon. The vectors 
'e1 , 

'e2  coincide with 

the polarization vectors of a real photon, and 
'e3  

corresponds to the additional polarization of the virtual 

photon. The vector  
'e0  distribution in this formula is 

absent due to the orthogonality of the photon and 

electron currents: 
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Taking into account (17), we obtain: 
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where a generalization of Stokes parameters for the case 

of 3 polarizations has been introduced: 
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where 
 ije /4  are the polarization, corresponding to 

polarization at an angle 
o45 , 

 ije  corresponds to the 

circular polarizations of a virtual photon in the plane 

jiee   (there are only three such planes: 21ee  , 31ee  , 

32ee  ): 
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Calculation (23) for polarization vectors lying in the 

polarization plane 
''ee 21  gives:  

   

  

 2

r

2

1 )(2=)(w lfesli LkklDeemLepe 

 
  

 ,
)(

4
2

2

222

l

fi

f
LDD

kpkp

kkm
 


 (24) 

 
 .2= 222   lll LLLD

 (25) 

In the case when the polarization of the photon state lies 

on the plane 21ee  : 
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For planes 
''ee 31  and 

'' ee 32 , calculations (23) must be 

carried out directly. For polarization vectors lying in the 

polarization plane 
''ee 31  we obtain:  
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For polarization vectors lying in the polarization 

plane 
'' ee 32  we obtain:  
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Formulas (26)–(37) were obtained for the process of 

photon emission by an electron in an electromagnetic 

wave field, but with such detail that would allow to 

obtain the corresponding expressions for other 

processes with simple substitutions. 

a) Photon emission by an electron during scattering 

in an electromagnetic wave field. 

Using the conservation laws for the parameters 

determining the probabilities (26)–(37) we obtain: 
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b) Annihilation of an electron-positron pair in the 

field of a monochromatic electromagnetic wave. 

It is necessary to perform substitutions: 
if pp  . 

The differential probability has the form: 
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where 1l , parameters determining W  (22) are 

obtained by: 
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c) Formation of an electron-positron pair by a 

photon in the field of a monochromatic 

electromagnetic wave. 

It is necessary to perform substitutions:  

 iffi kkpp  , .   

The differential probability has the form: 

 
  ffi

l

fi pplkkd
~~Ww=w (4)

0

)( 
  

 ,33

ff pdpd   (43) 
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 

  
,

4
=,=

2

ff

i

l pkkp

kk





 


 (44) 

 
 

,1,~2 2 l
i

ll
m

kkl
   (45) 

 
   ,/111

2~

2
,

2



 lf

lll
m

pkl
uuu  (46) 

  ,/111
2




 ml
lu  (47) 

d) Absorption of a photon by an electron in the field 

of a monochromatic electromagnetic wave. 

It is necessary to perform substitutions: if kk   

The differential probability has the form: 
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CONCLUSIONS 

In order to construct an analytical theory of 2nd-

order processes with respect to the fine structure 

constant, the probabilities of 1st-order processes with 

respect to the fine structure constant for polarized 
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photon states lying outside the mass surface were 

obtained. 02 fk . 

In contrast to the case were the electron lies on a 

bulk surface, the probability contains additional terms 

related to both the additional polarization along the 

vector 
'e3 , and the polarization effects of polarizations 

at angles 
o45  and circular polarizations in the planes, 

which forms the vector with 
'e3 , 

'e1 , 
'e2 . In total, these 

are 5 additional terms compared to the case of a real 

photon [2]. 

In the limit 0=res
 
where the photon is on the 

mass surface, expression (20) becomes the well-known 

expression for the process of emission of a polarized 

photon by an electron in a wave field [2]. 
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