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The effect of multiple scattering of ultrarelativistic electrons on the lattice atoms of a thin oriented crystal is in-

vestigated. It is shown that when the condition of dipole mode of radiation is violated, a radiation suppression effect 

should take place. This effect is similar to the Ternovskii-Shul’ga-Fomin effect of suppression of radiation in a thin 

amorphous target, but in the case of a thin oriented crystal the coherent bremsstrahlung is suppressed. The possibil-

ity and conditions for experimental observation of this effect at the DESY accelerator is discussed. 

PACS: 34.80.Dp, 61.85.+p 

 
INTRODUCTION 

Landau and Pomeranchuk showed [1] that the multi-

ple scattering of ultrarelativistic electrons on the atoms 

of matter can lead to the suppression of bremsstrahlung 

compared to the predictions of the Bethe-Heitler theory 

[2]. This occurs when the RMS angle of multiple scat-

tering of electronon atoms within the so-called radiation 

formation zone or coherence length [3] exceeds the 

characteristic radiation angle of the relativistic electron 

   , where  is the electron Lorenz-factor. A quantita-

tive theory of this effect was later developed by Migdal 

[4], and now this effect is called the Landau-

Pomeranchuk-Migdal effect (or the LPM effect) [5]. 

The experimental verification of the Migdal's theory 

was carried out at SLAC for the electron beam energies 

up to 25 GeV using a wide range of target thicknesses 

and kind of materials: from aluminum to uranium [6, 7]. 

The results of this study generally confirmed the predic-

tions of the Migdal theory of the LPM effect [4]. How-

ever, in the case of relatively thin targets, there were 

discrepancies with the Migdal's theory. 

In [8] it was shown that these discrepancies in the 

SLAC experiment were connected with the effect of 

suppression of bremsstrahlung in a thin layer of matter 

theoretically predicted earlier in [9]. 

Although both effects are of a similar nature, they 

nevertheless give significantly different predictions in 

the behavior of the spectral density of radiation depend-

ing on the energy of the emitted gamma quanta and, 

especially, depending on the target thickness.  

A quantitative theory of the effect of suppression of 

radiation in a thin layer of matter was developed in [10, 

11]. A detailed experimental study of this effect was 

carried out by the NA63 collaboration at the CERN SPS 

accelerator at electron energies up to 250 GeV [12, 13]. 

After the experimental confirmation of the main predic-

tions of the theory [8-11], this effect was named the 

Ternovskii-Shul’ga-Fomin effect (or TSF effect) after 

the authors of the theoretical prediction. 

Analogues of LPM and TSF effects should take 

place when relativistic electrons pass through oriented 

crystals [5, 8, 14, 15], but in this case, coherent brems-

strahlung radiation will be suppressed. In the CERN 

experiment to study channeling radiation [16], the LPM 

effect was observed in a relatively thick crystal. An ex-

perimental study of the TSF effect in oriented crystals 

has not yet been carried out. 

In this paper, the possibility of setting up an experi-

ment to study the TSF effect in thin crystals at the 

DESY accelerator is studied. Preliminary consideration 

shows that the presence of a coherent effect in the scat-

tering and radiation of relativistic electrons in the crystal 

makes it possible to observe the TSF effect at electron 

energies up to 6 GeV at the DESY accelerator. 

1. EFFECT OCCURRENCE CONDITIONS 

The main condition for the occurrence of both the 

LPM and TSF effects is the violation of the dipole re-

gime of radiation, that is, the excess of the RMS angle 

of multiple scattering of electron within the coherence 

length    over the characteristic radiation angle of the 

relativistic electron       , i.e. 

    (  )   .   (1) 

The coherence length of the bremsstrahlung increas-

es rapidly with the electron energy increase and de-

crease in the energy of the emitted gamma quantum [2]: 

       

   ⁄  ,   (2) 

where and    are the electron energy before and after 

radiation,   is the electron mass,   is the energy of the 

emitted gamma quantum,        (      )
The difference between the LPM and TSF effects is 

the conditions of their observation. Thus, Migdal's theo-

ry of the LPM effect [4] describes radiation in a bound-

less amorphous medium, and therefore is suitable for 

describing the effect of multiple scattering on brems-

strahlung in relatively thick targets, when      . To 

describe radiation in a thin target      the approach 

developed in [10,11] should be used.   

For the TSF effect to occur, two conditions must be 

met simultaneously: the first, a "thin target"     , and 

the second, a non-dipole radiation regime (1), i.e.  
       .   (3) 
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Resolving the left side of this inequality with respect 

to the energy of the emitted gamma-quantum using ex-

pressions (2), we obtain  

            ,   (4) 

where      is the boundary energy of the gamma quan-

tum, separating the regions of the spectrum of brems-

strahlung, in which two effects of radiation suppression 

are realized: TSF (at       ) and LPM (at   
    ). Recall that in both of these cases we are talking 

about a non-dipole radiation regime when condition (1) 

is satisfied, which in terms of the energy of gamma 

quanta can be represented as 

       
        

       (    ). (5) 

In this case     is the boundary energy of the 

gamma quantum, below which the non-dipole mode of 

radiation is realized, and either both effects of radiation 

suppression of LPM and TSF can take place. The con-

tribution of so-called dielectric suppression or Ter-

Mikaelian effect [3] is dominant in the soft part of spec-

trum at 

     .    (6) 

When preparing an experiment to test the TSF effect 

in a crystal, it is necessary to select such a region of the 

spectrum of emitted gamma quanta in which this effect 

could be observed most clearly and without interference 

with other mechanisms of radiation suppression. Simul-

taneous consideration of conditions (4) and (6) deter-

mines the optimal region of the radiation spectrum for 

observing the TSF effect as: 

            .   (7) 

At the same time, the condition of non-dipole radia-

tion must also be satisfied, i.e. the inequality (1), in 

which instead of     the RMS angle of coherent scatter-

ing of the particle in the crystal     should be used, and 

the coherence length    must be replaced by the crystal 

thickness    , since according to condition (3) the thick-

ness of the target must be less than the coherence 

length. Thus, for radiation in a thin oriented crystal, the 

non-dipole condition has the form:  

    (   )   .    (8) 

For example, in the case of using a silicon crystal 

with the thickness of        m oriented along the 

axis <111> to the electron beam with the energy 

 =6 GeV condition (7) gives: 

 MeV <   < 4 MeV.   (9) 

2. COHERENT EFFECT IN SCATTERING 

OF FAST ELECTRON IN CRYSTAL 

Unlike an amorphous substance, atoms in a crystal 

are arranged strictly periodically. If a relativistic 

charged particle moves along one of the crystal axes, 

then there are significant correlations in the successive 

interactions of such a particle with atoms located along 

this axis. These correlations lead to significant differ-

ences in electrodynamic processes in crystals compared 

to the processes in an amorphous medium.  

In elastic scattering, these correlations are manifest-

ed in the occurrence of a coherent effect in the scatter-

ing of a particle, when all atoms of a given string or 

plane of the crystal scatter the incoming particle in the 

same direction.  

The coherent effect in scattering occurs when fast 

charged particles move at a small angle      regard-

ing one of the crystal axes, where    is the Lindhard 

angle [17]: 

   √       ,   (10) 

where   is the distance between atoms along the crystal 

axis,  | | is the charge of an atomic nucleus. This ef-

fect manifests itself in intense scattering along the azi-

muthal angle   (Fig. 1) and also known as the «dough-

nut scattering effect» (Fig. 2). 
 

 
Fig. 1. Scattering of fast charged particles on of crys-

tal atomic strings 

 

Fig. 2. The angular distribution of scattered 6 GeV 

electrons impinged the Si crystal of 10 m thickness 

at    angle to the axis      . Results of computer 

simulation. The colors show the density distribution 

of particle scattering angles 

According to the theory of multiple scattering on 

chains of crystal atoms, developed in [18], the mean 

square angle of multiple scattering of electron (positron) 

on chains of crystal atoms 〈   
 〉 exceeds the correspond-

ing mean square of the scattering angle in an amorphous 

medium of the same thickness ms
2
 by a factor 

〈   
 〉

〈   
 〉

 
 

   
    (11) 

where   is the atomic screening radius [5]. 

This means that conditions for observing the TSF ef-

fect can be realized in a crystal at significantly lower 

electron energies than in an amorphous target. 

3. TSF EFFECT IN A THIN CRYSTAL 

The spectral density of bremsstrahlung radiation in a 

thin layer of matter (    ), defined by the formula 

[30]: 
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  (12) 

Note that the spectral density of radiation in the thin 

target (12) does not depend on the energy of the emitted 

gamma quantum and is completely determined by the 

parameter  , which is the non-dipole parameter of radia-

tion (1) multiplied by 1/2.  

Substituting into (12) the distribution function 

   (  ) on electron scattering angle   , obtained as a 

result of computer simulation of the scattering of elec-

trons with an energy of 6 GeV at various angles of inci-

dence relative to the <111> axis of a silicon crystal 

10 μm thick, we obtain the orientational dependence of 

the spectral density of radiation for gamma quanta in the 

energy range (9), shown in Fig. 3 by the solid red line. 

The green doted curve “T-M” is the result of calcu-

lations according to the formulas of the Ter-Mikaelian 

theory of coherent bremsstrahlung in a crystal [3], based 

on the use of the first Born approximation. In this case, 

there is a significant increase in the intensity of the 

bremsstrahlung radiation in the crystal compared to the 

radiation in an amorphous target of the same thickness 

shown in Fig. 3 with the green dot-dashed line “B-H” 

[2]. This excess is approximately       times as in 

(11).  

The use of the first Born approximation actually 

means neglecting the curvature of the particle's trajecto-

ry in the field of the crystal lattice, which is acceptable 

when the relativistic electron motion is far from the 

channeling regime, i.e. when     . Consideration of 

trajectory curvature when      in the formula (12) at 

the dipole approximation makes it possible to eliminate 

the formal infinity for coherent bremsstrahlung radiation 

at    , however, it gives an overestimated result (see 

the blue dashed curve “Dipole” in Fig. 3) compared to 

the result of the theory of the TSF effect [10, 11] (red 

solid curve) that demonstrate the suppression of radia-

tion.   

 

Fig. 3. Orientation dependence of the spectral density of 

coherent radiation of 6 GeV electrons in 10 m thicksil-

icon crystal when the beam falls at an angle   
regarding the axis <111> (Details in the text) 
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