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�INTRODUCTION



	It is wellknown that a system consists of single resonating cavity with transverse electromagnetic field that modulates a beam tracing through a cavity in angles depending on its  admittance point in time and deflecting magnet can be a buncher [1]. 	Problem of bunching of relativistic unmonochromatic electron beam circulating in homogenous magnetic field was studied in [2].In present work we investigate a bunching properties of systems consist of a single resonating cavity with a transverse magnetic or a longitudinal electric field and a deflecting magnet with homogenous magnetic field.

1. BUNCHING SYSTEM CONSISTING OF A CAVITY WITH TRANSVERSE MAGNETIC  FIELD AND A MAGNET WITH A HOMOGENEOUS FIELD

	Let a particle beam passes a cavity with a transverse magnetic field like T120 mode where a magnetic field component is given by [3]:

       � EMBED Equation.2  ���                  (1)

where a, b  are the cavity  x   and  y  dimensions respectively, ( is a frequency. The particles move in Z  direction and cavity length  lc  is adjusted to satisfy equation   (lC/2v0=(/2,   where v0  is a particle velocity. After passing the cavity a beam is deflected on the angle ( depending on its admittance point in time t0.  We suppose the beam has a neglected sizes x=0,   y=0,  and (  angle is  also close to zero. Than for  (   we have:

� EMBED Equation.2  ���                    (2)

where  (=(t0   is initial phase of particle.

After passing a cavity particles get into a homogenous magnetic field of intensity BM,  where they turn in ( angle. A length of a way of particle into magnetic field region is defined by 

� EMBED Equation.2  ���         (3)

where � EMBED Equation.2  ���

As  ((() is sufficiently small, we have  following expression for the time of magnetic field passing

  � EMBED Equation.2  ���        (4)

For the particle phases at its final position in magnetic field we have

            � EMBED Equation.2  ���                     (5)

where � EMBED Equation.2  ��� is a bunching parameter, and � EMBED Equation.2  ���.

Relation (5)  is equal to those for a klystron  type buncher (a longitudinal electric field cavity and drift spacing l) that are following: (((lV/((0V0 , (0=2(l/((0 ,  where  V0 is the injection voltage and  (0 = v0 /c  is the initial velocity of particle. 

	Opposite to klystron type buncher where a bunching take place near ( = 0 in the system we considered we have a bunching near  (=(. In such a way the buncher with HF field and a deflecting magnet is equal to klystron type buncher. 



� EMBED CDraw5  ���

2. BUNCHING SYSTEMS CONSISTING OF A CAVITY WITH LONGITUDINAL ELECTRIC FIELD AND A MAGNET WITH A HOMOGENEOUS FIELD

	Let now consider a particle movement in a system consists of a longitudinal electric field cavity and a deflecting magnet. The energy of particles at the cavity exit is  W=eV0  + eVsinwt0. We suppose 

V << V0   and than we can obtain the expression for radius of particle trajectory as the initial phase function:

            � EMBED Equation.2  ���                       (6)� EMBED Equation.2  ���

where � EMBED Equation.2  ���,        (=V/V0  .

	A length of particle trajectory in magnetic field region when (  angle turning is defined by:

� EMBED Equation.2  ���   (7) 

	The time needed for particle passed through magnetic field region is defined by the expression:

      � EMBED Equation.2  ���          (8)

	Phase correlation in this case is: 

              � EMBED Equation.2  ���                         (9)

where� EMBED Equation.2  ��� ,  � EMBED Equation.2  ���   .	Here as in above case the phase correlation is equal to those for a klystron type buncher. It must be pointed out the feature in the dependence of bunching parameter on angle (  . For given (  there is  ( ( (0 for which (l=0. When particle turns in angle ( < (0   we have (l <0,  so that particle bunching takes place near a phase (=0.  When ( > (0  and  (l >0  we can see a particle bunching near (=(.

� EMBED CDraw5  ���

 	Both systems considered have also the chopper properties. In the first case (a transverse magnetic field in a cavity) maximum division of particle trajectory is near  90o  and 270o  angles. In the second case (a longitudinal electric field in a cavity) the most effective division of particle trajectory is near (=180o.  However in last case (l   is near zero and for the combining in the system both buncher and chopper properties one have to increase a particle trajectory radius (or expend a magnetic field region).

3. DOUBLE CAVITY BUNCHER

	For  double cavity buncher that consists of two cavities with a longitudinal electric field and drift spacing an expression for final phase can be written as

 � EMBED Equation.2  ���        (10)

where� EMBED Equation.2  ���,� EMBED Equation.2  ��� , � EMBED Equation.2  ���, � EMBED Equation.2  ���.

	V1,V2 are the voltages on cavity electrodes, l1 is the distance between 1-st and 2-nd cavities,  l2  is the distance between 2-nd cavity and linac.

	Similarly to [ 4 ]  we consider a middle-square phase shape with a given initial phase [ - ( , ( ]  ( ( ( ( ) as an efficiency of buncher

     � EMBED Equation.2  ���       (11)

where  � EMBED Equation.2  ���   is an average  phase of particles.

	With using (11) one can obtain a phase decrease factor Kav  of a bunch in a form

                � EMBED Equation.2  ���                    (12)

	The optimized parameters of buncher (1  and  (2 can be found from the relation

                           � EMBED Equation.2  ���                         (13)

	It can be shown that optimized values of (1 and (2 parameters lead to the following result: an absolute phase minimum corresponds to g = 0 and l1 ( (.  Another words, the first stage of buncher (cavity + drift distance) role is to redistribute particles phases for its matching into second cavity in the time at which the second cavity voltage grows up linearly. If g is different from zero particles enter the second cavity with the energy that is different from eV0 that leads to  final phase  extending. In fig. 1    the dependence of particle energy after the second stage of bunching from the phase value is shown. In this case � EMBED Equation.2  ��� ,  � EMBED Equation.2  ���  and the optimized bunching is made for 90% of particles with g=0,1 and g=0,4. With the increasing of g value a phase shape of bunches is extended due to phase distribution dispersion.

�

 Figure 1

	Phase shape decrease factor evaluated as a function of the relation of cavity field amplitudes is shown in fig. 2 for optimized bunching part of particles 70%, 80% and 90%. One can see a quick growth of phase decrease factor with the decrease of bunched part of a beam p  for g=0.  

The  values of phase decrease factor for the set of optimized parameters of double cavity buncher for g=0 ;0,1;0,2 are shown in table 1 together with    KAV  values for single cavity buncher. It can be noted that both KAV   and ( optimized for single cavity buncher can be obtained analytically with using eq.(11)- (13). 

	The  values of phase decrease factor for the set of optimized parameters of double cavity buncher for g=0 ;0,1;0,2 are shown in table 1 together with    KAV  values for single cavity buncher. It can be noted that both KAV   and ( optimized for single cavity buncher can be obtained analytically with using eq. (11) - (13). 

�

 Figure 2

Data from the Table 1 and fig. 2 show one set of accept-able parameters with g=0,1 but a large length of  l1 in this case makes such systems impractical.

As it was shown above a system consists of a transverse magnetic field cavity and deflecting magnet in sense of phase transforming function in equal klystron type buncher, but it does not change the energy of bunching particles.



Table 1.

P(%)��90�80�70 �60�50��Single

buncher�KAV�2,06�2,76�3,82�5,5�8,31��Double�g=0    KAV�

10,4�

41,4�

180�

270�

1640��stage�g=0,1       KAV� 

9,7�

20,3�

22,3�

35�

43��buncher�g=0,2      KAV�

8,1� 

9,6�

10,7�

15�

22��	Therefore if one uses such buncher as a first stage together with a longitudinal electric field cavity and drift distance as  a second stage it makes possible to achieve a hypothetical case with g=0 or l1 ( (.   For this buncher phase equation can be written as 

    � EMBED Equation.2  ���         (14)

where  � EMBED Equation.2  ���   ,   � EMBED Equation.2  ��� , 

l  is drift distance, V  is cavity voltage and  (t  is defined by eq. (4).
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	Obtained optimized values of  (t   and  (    as a function of bunching part of particles are shown in fig. 3.  The corresponding values of phase decrease factor are shown in Table 1. The theoretical values of phase shape decrease factor below bunching part 80% can achieve enough great values. Our consideration does not include space charge effect although its role is increased for a big values of phase shape decrease factor.

�

Figure 3

	It is important that evaluated optimized values of (t and  (  can not be supported with needed degree of accuracy in experiment. In real experimental conditions always there are several deviations of angular, energetic and frequency parameters from its best values. To study the effect of all parameters deviation from its optimized values for double stage buncher is too cumbersome problem and we shall consider a buncher consists of a transverse magnetic field cavity and deflecting magnet.

Let one of the parameters has a deviation of  

((i (<< 1, so that  yi = y0i (1 + (i) .  Then equation (4) can be written as

� EMBED Equation.2  ���    (15)

	For the middle square phase shape taking into consideration the deviation  (i we have:

  � EMBED Equation.2  ���        (16)

where  � EMBED Equation.2  ��� and � EMBED Equation.2  ��� are determined by eq. (10) - (13),  c(() = ( - sin((cos( , and summing takes place for all  (i  that are assumed independent. Parameters ai  and bi  from eq. (16) are shown in Table 2.

Table 2.

Parameter�        ai�bi��Angular divergence�1�( ctg (/2��Intensity BM deviation�1�1��Injection voltage V0

 deviation�� EMBED Equation.2  ����0��RF deviation�1�0��RF power deviation�0�1��	The equation like (16) can be obtained for double stage buncher too, but it is combersome and we decide let it pan.

	It must be noted, that equation (16) provides a possibility to find the parameter deviations permissible for the buncher, for which phase shape of bunches does not exceed of given value.

Conclusion

1) It was shown the system consist of a transverse magnetic field resonating cavity and deflecting magnet is equal to klystron type buncher and has a chopper properties.

2) The system consist of a longitudinal field resonating cavity and deflecting magnet is equal to klystron type buncher and has a chopper properties too in which connection buncher parameters are strong dependent on the angle of particle rotation.

3) Double stage buncher consist of transverse magnetic field cavity followed by deflecting magnet as the first stage and longitudinal field cavity followed by drift spacing has more buncher efficiency than conventional double cavity buncher with one drift spacing.

4) It was shown the essential role of beam and buncher parameter deviation (instabilities) in phase shape of bunches broadening.
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