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DYNAMICS OF CHAOTIC WAVES UNDER WEAK NONLINEAR
INTERACTION IN THE MAGNETIZED PLASMA WAVEGUIDE
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The chaotic dynamics of high-frequency (HF) electromagnetic wave decay into HF electromagnetic waves and LF
plasma waves in the magnetized plasma waveguide has been investigated. In contrast to [1-3], where we have in-
vestigated the case when one LF wave takes part in the interaction, in this work we consider the case when in the
interaction a few of LF waves take part. It is shown that criterion of dynamic chaos occurence [1, 2] not only allows
to qualitatively find the parameter region, where the dynamics of weak nonlinear wave interaction is chaotic, but
also rather correctly describes the boundary of transition to chaos.
PACS numbers: 05.45.Pq, 52.50.Sw, 84.40.Az, 29.27.Bd

1  INTRODUCTION

The criterion of dynamic chaos occurrence at weak
nonlinear wave interaction [1, 2] consists in the follow-
ing. Energy transfer from one wave to another on their
nonlinear interaction can have the nature of instability
(with increment Γ ). It was found that Γ4  is the half-
width of the nonlinear resonance on weak nonlinear
wave interaction. If it exceeds the distance between
neighbouring wave resonances (which is equal to δ2 ,
for details see [1-4]), then the dynamics of weak nonlin-
ear wave interaction is chaotic: 1/2 >Γ≡ δK . We
have shown that the modified decay is always chaotic
[3]. In addition we have found out that the numerical
parameter 01/4 >−ΩΓ=Ch  ( Γ  is a solution of the
dispersion equation describing the modified decay, Ω
is the dimensionless frequency of plasma wave) rather
correctly describes the boundary of transition to chaos.
Bellow we have investigated the chaotic dynamics of
HF electromagnetic wave decay (frequency MN ,ω , lon-
gitudinal wave number Mk , amplitude MNA , ) in the
magnetized plasma waveguide (radius of a metal case
a ) into HF electromagnetic waves ( lnlln Ak ,, ,,ω ) and
into LF plasma waves ( pkppk ,, ,, Φκω ). It is shown that
the criterion of dynamic chaos occurrence

01/4 >−Γ= δCh  (where Γ  is the maximum incre-
ment giving the corresponding dispersion equation, and
δ  is the minimum among frequencies and their diffe-
rences) not only allows to find qualitatively the parame-
ter region where the dynamics of weak nonlinear wave
interaction is chaotic, but also rather correctly describes
the boundary of transition to chaos.

2  THE BASIC EQUATIONS AND RESULTS

A reduced set of equations, which describe the decay
process under investigation, has a form [4]:
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It is supposed in (1), that the condition of spatial
synchronism is fulfilled: plM kk κ+= . If in (1) the con-
dition of spatial synchronism is fulfilled only for one
triplet of wave vectors, for example for waves belong-
ing to the first transversal mode (N=1, n=1, k=1) then
from (1), taking into account the LF excitation on the
second transversal mode, we have:
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where introduced are dimensionless variables:
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At Ω Ω1 2 1, ,p p> >>  from (2) one can obtain
such reduced equations:
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which describe the HF electromagnetic wave decay into
the HF electromagnetic wave and the LF plasma wave
in the magnetized plasma waveguide, which is excited
by the LF wave (last equation in (3)). In (3) p
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the dispersion equation:

)(22
1

,1,1

2

δ
αβ

δω
ωω

−Ω+
−

Ω
−=

pp

.               (4)

The result of the numerical solution of dispersion
equation (4) at δ ∈ ] ; . ]0 2 5 , Ω1 4 65, [ ; . ]p ∈ , α=0.187,

β=0.433 is represented in Fig. 1. The dependence of Γ
on δ and Ω1, p  is shown with the help of the map of
lines of an identical level. It is easy to see that the
increment is maximum when δ≈0. It monotonically
decreases with growth of δ and verges towards the value
Γ Ω= 1 2 1, p . In Fig. 2 the map of the parameter

Ch = −4 1Γ / δ  is presented as a function of δ and
Ω1, p . The set of equations (3) was numerically solved

for different values of δ and Ω1, p . Fig. 3 shows the
map of the maximum Lyapunov index, according to pa-
rameters of δ and Ω1, p , obtained by solving numeri-
cally Eq. (3). The numerical value of the maximum
Lyapunov index is represented by tints of grey colour.
Correspondence between the tints of grey and the
numerical value of the maximum Lyapunov index can is
seen in Fig. 4. Comparison of Fig. 2 and 3 shows that
the criterion 0>Ch  defines adequately well the pa-
rameter region where the dynamics of system (3) is
chaotic. In this parameter region, where system (3) is
close to the integrated one (region δ~0), despite that the
criterion is fulfilled, the grade of system randomness is
decreased. At δ=0 system (3) is integrated and its
dynamics is regular. Such behaviour of nonintegrated
systems is not unusual. So, on interaction of wave-
particle type, in the phase space there are islands of
stability near which the particle dynamics has a strong
regular component, and neighboring trajectories diverge
with time not exponentially fast, but proportionally to
t −ξ , where ξ ~ 1 .

Let us turn to system (2). At the linear stage of
decay it is easy to obtain the dispersion equation:
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From (5) it is seen that if we neglect the LF
excitation of decay on the second transversal mode, then
we obtain the dispersion equation

1))(( ,1
,1

2
,1

2 =∆+Ω− M
lp ωω  which was investigated in [3].

Particularly, in [3] it is shown that the modified decay
( 0~,1

,1
M
l∆ , Ω1

2 1, p << ) always is stochastically instable.

In this case in the criterion 01/4 >−Γ= δCh : Γ  is the

maximum increment which gives (5), and
δ = −min( , ,| |), , , ,Ω Ω Ω Ω1 2 1 2p p p p . The result of
the numerical solution of dispersion equation (5) at

]10;0[,1
,1 ∈∆ M
l , ]10;0[,1 ∈Ω p , 0.5,2 =Ω p , α=1.0, β=1.0,

is represented in Fig. 5. Dependence of Γ  on M
l

,1
,1∆  and

Ω1, p  is shown with the help of the map of lines of an
identical level. From Fig. 5 one can see that the
instability takes place when the conditions of the
synchronism M

lp
,1
,1,1 ∆=Ω , M

lp
,1
,1,2 ∆=Ω  are fulfilled. In the

parameter region, where 1,1
,1,2,1 >>∆≈Ω≈Ω M
lpp , system

(2) may be reduced.
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Fig. 1. Map of increment.

Ch=0

1.5 1.0 0.5 0

Fig. 2. Map Ch = −4 1Γ / δ .

Fig. 3. Map of maximum Lyapunov index.

As a result we obtain system (3). This case was
investigated earlier. Let us consider the case when the
frequency of one or both LF waves can not be assumed
as high, i.e. when the system gets into the region of
modified decay. In Fig. 6, 7 shown are the maps of the
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maximum increment Γ  and the stochasticity parameter
0>Ch  depending on ]0.5;2.0[,1

,1 ∈∆ M
l  and

Ω1 0 4 50, [ . ; . ]p ∈  at 2.0,2 =Ω p . From Fig. 7 it is seen
that the parameters region, where the dynamics (2) is
stochastic, is increased in comparison with the case of
modified decay nonexcited by the additional LF wave
(see also [3]). The map of the maximum Lyapunov
index is shown in Figs. 8, 9. Comparing Fig. 7 and
Fig. 8 one can see that in the parameter region where the
criterion 0>Ch is fulfilled the maximum Lyapunov
index is more than zero, and the dynamics of the weak
nonlinear wave interaction is chaotic.

0.020

0.015

0.010

0.005

Fig. 4. Correspondence between the tints of grey and
the numerical value of maximum Lyapunov index.

Fig. 5. Map of increment Γ . 0.5,2 =Ω p .

Fig. 6. Map of increment Γ . 2.0,2 =Ω p .

Fig. 7. Map of parameter 0>Ch . 2.0,2 =Ω p

Fig. 8. Map of maximum Lyapunov index.

Fig. 9. Correspondence between the tints of grey and
the numerical value of maximum Lyapunov index.

3  CONCLUSIONS

We have formulated the conditions under which the
decay of the electromagnetic wave, propagating in the
magnetized plasma waveguide, into the HF electromag-
netic wave and LF plasma wave is stochastic. It is
shown that the criterion of the dynamic chaos occurence

01/4 >−Γ= δCh , where Γ  is the maximum incre-
ment giving the corresponding dispersion equation, and
δ  is the minimum quantity among frequencies and their
differences, not only allows to find qualitatively the pa-
rameter region, where the dynamics of weak nonlinear
wave interaction is chaotic, but also describes rather
correctly the boundary of transition to chaos.
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